These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37149222)

  • 1. Outcome-Supervised Deep Learning on Pathologic Whole Slide Images for Survival Prediction of Immunotherapy in Patients with Non-Small Cell Lung Cancer.
    Li B; Yang L; Zhang H; Li H; Jiang C; Yao Y; Cheng S; Zou B; Fan B; Dong T; Wang L
    Mod Pathol; 2023 Aug; 36(8):100208. PubMed ID: 37149222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From pixels to patient care: deep learning-enabled pathomics signature offers precise outcome predictions for immunotherapy in esophageal squamous cell cancer.
    Li B; Qin W; Yang L; Li H; Jiang C; Yao Y; Cheng S; Zou B; Fan B; Dong T; Wang L
    J Transl Med; 2024 Feb; 22(1):195. PubMed ID: 38388379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole slide image-based weakly supervised deep learning for predicting major pathological response in non-small cell lung cancer following neoadjuvant chemoimmunotherapy: a multicenter, retrospective, cohort study.
    Han D; Li H; Zheng X; Fu S; Wei R; Zhao Q; Liu C; Wang Z; Huang W; Hao S
    Front Immunol; 2024; 15():1453232. PubMed ID: 39372403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a supervised deep learning algorithm for automated whole-slide programmed death-ligand 1 tumour proportion score assessment in non-small cell lung cancer.
    Hondelink LM; Hüyük M; Postmus PE; Smit VTHBM; Blom S; von der Thüsen JH; Cohen D
    Histopathology; 2022 Mar; 80(4):635-647. PubMed ID: 34786761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAMPLER: unsupervised representations for rapid analysis of whole slide tissue images.
    Mukashyaka P; Sheridan TB; Foroughi Pour A; Chuang JH
    EBioMedicine; 2024 Jan; 99():104908. PubMed ID: 38101298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning.
    Zhang W; Wang W; Xu Y; Wu K; Shi J; Li M; Feng Z; Liu Y; Zheng Y; Wu H
    Lab Invest; 2024 Aug; 104(8):102094. PubMed ID: 38871058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Field-of-View Deep Learning Model Predicts Nonsmall Cell Lung Cancer Programmed Death-Ligand 1 Status from Whole-Slide Hematoxylin and Eosin Images.
    Sha L; Osinski BL; Ho IY; Tan TL; Willis C; Weiss H; Beaubier N; Mahon BM; Taxter TJ; Yip SSF
    J Pathol Inform; 2019; 10():24. PubMed ID: 31523482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers.
    Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J
    EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images.
    Tian P; He B; Mu W; Liu K; Liu L; Zeng H; Liu Y; Jiang L; Zhou P; Huang Z; Dong D; Li W
    Theranostics; 2021; 11(5):2098-2107. PubMed ID: 33500713
    [No Abstract]   [Full Text] [Related]  

  • 10. [Real-world study on the efficacy and prognostic predictive biomarker of patients with metastatic non-small cell lung cancer treated with programmed death-1/programmed death ligand 1 inhibitors].
    Zhu WJ; Zhu HH; Liu YT; Lin L; Xing PY; Hao XZ; Cong MH; Wang HY; Wang Y; Li JL; Feng Y; Hu XS
    Zhonghua Zhong Liu Za Zhi; 2022 May; 44(5):416-424. PubMed ID: 35615798
    [No Abstract]   [Full Text] [Related]  

  • 11. Identification of lymph node metastasis in pre-operation cervical cancer patients by weakly supervised deep learning from histopathological whole-slide biopsy images.
    Liu Q; Jiang N; Hao Y; Hao C; Wang W; Bian T; Wang X; Li H; Zhang Y; Kang Y; Xie F; Li Y; Jiang X; Feng Y; Mao Z; Wang Q; Gao Q; Zhang W; Cui B; Dong T
    Cancer Med; 2023 Sep; 12(17):17952-17966. PubMed ID: 37559500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning.
    Chen Z; Wong IHM; Dai W; Lo CTK; Wong TTW
    Mod Pathol; 2024 Jun; 37(6):100487. PubMed ID: 38588884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning to estimate durable clinical benefit and prognosis from patients with non-small cell lung cancer treated with PD-1/PD-L1 blockade.
    Peng J; Zhang J; Zou D; Xiao L; Ma H; Zhang X; Li Y; Han L; Xie B
    Front Immunol; 2022; 13():960459. PubMed ID: 36420269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Prediction of Immune Checkpoint Inhibition Therapy for Non-Small Cell Lung Cancer.
    Jiang J; Jin Z; Zhang Y; Peng L; Zhang Y; Zhu Z; Wang Y; Tong D; Yang Y; Wang J; Yang Y; Xiao K
    Front Immunol; 2021; 12():646874. PubMed ID: 33927719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a genomic mutation signature to predict response to PD-1 inhibitors in non-squamous NSCLC: a multicohort study.
    Bai X; Wu DH; Ma SC; Wang J; Tang XR; Kang S; Fu QJ; Cao CH; Luo HS; Chen YH; Zhu HB; Yan HH; Wu YL; Dong ZY
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32606052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Deep Learning Model for Non-Small Cell Lung Cancer Survival.
    She Y; Jin Z; Wu J; Deng J; Zhang L; Su H; Jiang G; Liu H; Xie D; Cao N; Ren Y; Chen C
    JAMA Netw Open; 2020 Jun; 3(6):e205842. PubMed ID: 32492161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Validation of a Machine Learning Model to Explore Tyrosine Kinase Inhibitor Response in Patients With Stage IV EGFR Variant-Positive Non-Small Cell Lung Cancer.
    Song J; Wang L; Ng NN; Zhao M; Shi J; Wu N; Li W; Liu Z; Yeom KW; Tian J
    JAMA Netw Open; 2020 Dec; 3(12):e2030442. PubMed ID: 33331920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.