These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37149649)

  • 1. Deep learning-based inverse design of microstructured materials for optical optimization and thermal radiation control.
    Sullivan J; Mirhashemi A; Lee J
    Sci Rep; 2023 May; 13(1):7382. PubMed ID: 37149649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning based analysis of microstructured materials for thermal radiation control.
    Sullivan J; Mirhashemi A; Lee J
    Sci Rep; 2022 Jun; 12(1):9785. PubMed ID: 35697745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the design space of photonic topological states via deep learning.
    Singh R; Agarwal A; W Anthony B
    Opt Express; 2020 Sep; 28(19):27893-27902. PubMed ID: 32988072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Neural Network-Based Prediction of the Optical Properties of Spherical Core-Shell Plasmonic Metastructures.
    Vahidzadeh E; Shankar K
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33806266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem solar cells efficiency prediction and optimization
    Yi C; Wu Y; Gao Y; Du Q
    Phys Chem Chem Phys; 2021 Feb; 23(4):2991-2998. PubMed ID: 33480915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse design of core-shell particles with discrete material classes using neural networks.
    Kuhn L; Repän T; Rockstuhl C
    Sci Rep; 2022 Nov; 12(1):19019. PubMed ID: 36347865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces.
    Mall A; Patil A; Sethi A; Kumar A
    Sci Rep; 2020 Nov; 10(1):19427. PubMed ID: 33173073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired Microstructured Materials for Optical and Thermal Regulation.
    Dou S; Xu H; Zhao J; Zhang K; Li N; Lin Y; Pan L; Li Y
    Adv Mater; 2021 Feb; 33(6):e2000697. PubMed ID: 32686250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven design of thin-film optical systems using deep active learning.
    Hong Y; Nicholls DP
    Opt Express; 2022 Jun; 30(13):22901-22910. PubMed ID: 36224980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.
    Kaya M; Hajimirza S
    Sci Rep; 2018 May; 8(1):8170. PubMed ID: 29802283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Inverse Design of Nanostructures (NIDN).
    Gómez P; Toftevaag HH; Bogen-Storø T; Aranguren van Egmond D; Llorens JM
    Sci Rep; 2022 Dec; 12(1):22160. PubMed ID: 36550167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-Learning Microstructure for Inverse Material Design.
    Pei Z; Rozman KA; Doğan ÖN; Wen Y; Gao N; Holm EA; Hawk JA; Alman DE; Gao MC
    Adv Sci (Weinh); 2021 Dec; 8(23):e2101207. PubMed ID: 34716677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of optical meta-structures with applications to beam engineering using deep learning.
    Singh R; Agarwal A; Anthony BW
    Sci Rep; 2020 Nov; 10(1):19923. PubMed ID: 33199746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and Inverse Design of Structural Colors of Nanoparticle Systems via Deep Neural Network.
    Ma L; Hu K; Wang C; Yang JY; Liu L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring High Thermal Conductivity Amorphous Polymers Using Reinforcement Learning.
    Ma R; Zhang H; Luo T
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15587-15598. PubMed ID: 35344333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials.
    Ma C; Chang Y; Wu S; Zhao RR
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35833606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions.
    Xu X; Aggarwal D; Shankar K
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of metamaterials and metamaterial-microcavity based on deep neural networks.
    Lan G; Wang Y; Ou JY
    Nanoscale Adv; 2022 Nov; 4(23):5137-5143. PubMed ID: 36504733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse design of an integrated-nanophotonics optical neural network.
    Qu Y; Zhu H; Shen Y; Zhang J; Tao C; Ghosh P; Qiu M
    Sci Bull (Beijing); 2020 Jul; 65(14):1177-1183. PubMed ID: 36659147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.