These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37150137)

  • 1. Conceptual design of compliant bone scaffolds by full-scale topology optimization.
    Smit T; Koppen S; Ferguson SJ; Helgason B
    J Mech Behav Biomed Mater; 2023 Jul; 143():105886. PubMed ID: 37150137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.
    Wang X; Xu S; Zhou S; Xu W; Leary M; Choong P; Qian M; Brandt M; Xie YM
    Biomaterials; 2016 Mar; 83():127-41. PubMed ID: 26773669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico assessment of the bone regeneration potential of complex porous scaffolds.
    Asbai-Ghoudan R; Nasello G; Pérez MÁ; Verbruggen SW; Ruiz de Galarreta S; Rodriguez-Florez N
    Comput Biol Med; 2023 Oct; 165():107381. PubMed ID: 37611419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions.
    Wieding J; Souffrant R; Mittelmeier W; Bader R
    Med Eng Phys; 2013 Apr; 35(4):422-32. PubMed ID: 22809675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability.
    Foroughi AH; Razavi MJ
    Acta Biomater; 2022 Jul; 146():317-340. PubMed ID: 35533924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.
    Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds.
    Kopp A; Derra T; Müther M; Jauer L; Schleifenbaum JH; Voshage M; Jung O; Smeets R; Kröger N
    Acta Biomater; 2019 Oct; 98():23-35. PubMed ID: 30959185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Two-Scale Multi-Resolution Topologically Optimized Multi-Material Design of 3D Printed Craniofacial Bone Implants.
    Park J; Zobaer T; Sutradhar A
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33498498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of biodegradable customized tibial scaffold with advanced architected materials utilizing additive manufacturing.
    Kladovasilakis N; Charalampous P; Boumpakis A; Kontodina T; Tsongas K; Tzetzis D; Kostavelis I; Givissis P; Tzovaras D
    J Mech Behav Biomed Mater; 2023 May; 141():105796. PubMed ID: 36965217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants.
    Ahn H; Patel RR; Hoyt AJ; Lin ASP; Torstrick FB; Guldberg RE; Frick CP; Carpenter RD; Yakacki CM; Willett NJ
    Acta Biomater; 2018 May; 72():352-361. PubMed ID: 29563069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep.
    Wieding J; Lindner T; Bergschmidt P; Bader R
    Biomaterials; 2015 Apr; 46():35-47. PubMed ID: 25678114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications.
    Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M
    Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting.
    Bari K; Arjunan A
    J Mech Behav Biomed Mater; 2019 Jul; 95():1-12. PubMed ID: 30947119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic implants.
    Liverani E; Rogati G; Pagani S; Brogini S; Fortunato A; Caravaggi P
    J Mech Behav Biomed Mater; 2021 Sep; 121():104608. PubMed ID: 34077904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A time-dependent mechanobiology-based topology optimization to enhance bone growth in tissue scaffolds.
    Wu C; Fang J; Entezari A; Sun G; Swain MV; Xu Y; Steven GP; Li Q
    J Biomech; 2021 Mar; 117():110233. PubMed ID: 33601086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.