These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37150365)

  • 21. Effects of different cellulases on the release of phenolic acids from rice straw during saccharification.
    Xue Y; Wang X; Chen X; Hu J; Gao MT; Li J
    Bioresour Technol; 2017 Jun; 234():208-216. PubMed ID: 28319769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redesigning the Aspergillus nidulans xylanase regulatory pathway to enhance cellulase production with xylose as the carbon and inducer source.
    Ballmann P; Lightfoot J; Müller M; Dröge S; Prade R
    Microb Cell Fact; 2019 Nov; 18(1):193. PubMed ID: 31699093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of Aspergillus niger integrated with cellulase gene from Ampullaria gigas Spix for improved enzyme production and saccharification of alkaline-pretreated rice straw.
    Yang P; Zhang H; Cao L; Zheng Z; Jiang S
    3 Biotech; 2016 Dec; 6(2):236. PubMed ID: 28330308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutagenesis and genotypic characterization of Aspergillus niger FCBP-02 for improvement in cellulolytic potential.
    Shafique S; Bajwa R; Shafique S
    Nat Prod Commun; 2009 Apr; 4(4):557-62. PubMed ID: 19476005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.
    Bansal N; Janveja C; Tewari R; Soni R; Soni SK
    Appl Biochem Biotechnol; 2014 Jan; 172(1):141-56. PubMed ID: 24052336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Introduction of Cellulolytic Bacterium
    Cai Z; Wang Y; You Y; Yang N; Lu S; Xue J; Xing X; Sha S; Zhao L
    Microorganisms; 2024 May; 12(5):. PubMed ID: 38792808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examination the Hydrolysis Feasibility of OPEFB Biomass Using Aspergillus niger as Cellulase Enzyme-producing Fungus.
    Nurdin M; Abimanyu H; Naufalsar M; Maulidiyah M; Arifin ZS; Wibowo D; Salim OA
    J Oleo Sci; 2021 May; 70(5):637-645. PubMed ID: 33840663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange.
    Omojasola PF; Jilani OP
    Pak J Biol Sci; 2008 Oct; 11(20):2382-8. PubMed ID: 19137846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens.
    Saliu BK; Sani A
    EXCLI J; 2012; 11():468-79. PubMed ID: 27418920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depolymerization of chitosan with a crude cellulase preparation from Aspergillus niger.
    Xie Y; Wei Y; Hu J
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1074-83. PubMed ID: 19333566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment.
    Salihu A; Abbas O; Sallau AB; Alam MZ
    3 Biotech; 2015 Dec; 5(6):1101-1106. PubMed ID: 28324400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of ellagitannase production by Aspergillus niger GH1 by solid-state fermentation.
    de la Cruz R; Ascacio JA; Buenrostro J; Sepúlveda L; Rodríguez R; Prado-Barragán A; Contreras JC; Aguilera A; Aguilar CN
    Prep Biochem Biotechnol; 2015; 45(7):617-31. PubMed ID: 25085574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermo-alkali-stable lipase from a novel
    El-Ghonemy DH; Ali TH; Hassanein NM; Abdellah EM; Fadel M; Awad GEA; Abdou DAM
    Prep Biochem Biotechnol; 2021; 51(3):225-240. PubMed ID: 32808876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on influence of natural biowastes on cellulase production by Aspergillus niger.
    Kiranmayi MU; Poda S; Vijayalakshmi M; Krishna PV
    J Environ Biol; 2011 Nov; 32(6):695-9. PubMed ID: 22471203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification and properties of a cellulase from Aspergillus niger.
    Hurst PL; Nielsen J; Sullivan PA; Shepherd MG
    Biochem J; 1977 Jul; 165(1):33-41. PubMed ID: 19015
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Díaz GV; Coniglio RO; Chungara CI; Zapata PD; Villalba LL; Fonseca MI
    Mycology; 2021; 12(3):160-173. PubMed ID: 34567828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Separation and purification of cellulase using affinity membrane].
    Shi XZ; Guo CT; Zhou JW; Wang ZL; Rao PF
    Se Pu; 2002 Jul; 20(4):308-12. PubMed ID: 12541911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzyme activity of Aspergillus section Nigri strains isolated from the Korean fermentation starter, nuruk.
    Jeong E; Seo JA
    J Microbiol; 2022 Oct; 60(10):998-1006. PubMed ID: 35984613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of anaerobically treated distillery spent wash for production of cellulases under solid-state fermentation.
    Acharya BK; Mohana S; Jog R; Divecha J; Madamwar D
    J Environ Manage; 2010 Oct; 91(10):2019-27. PubMed ID: 20627545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactic acid production from co-fermentation of food waste and spent mushroom substance with Aspergillus niger cellulase.
    Ma X; Gao M; Wang N; Liu S; Wang Q; Sun X
    Bioresour Technol; 2021 Oct; 337():125365. PubMed ID: 34102515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.