BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 37150372)

  • 1. A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds.
    Guo F; Wang E; Yang Y; Mao Y; Liu C; Bu W; Li P; Zhao L; Jin Q; Liu B; Wang S; You H; Long Y; Zhou N; Guo W
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124728. PubMed ID: 37150372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties.
    Guo W; Yang Y; Liu C; Bu W; Guo F; Li J; Wang E; Peng Z; Mai H; You H; Long Y
    J Mech Behav Biomed Mater; 2023 Jun; 142():105848. PubMed ID: 37099921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X; Du X; Li D; Ao R; Yu B; Yu B
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function.
    Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C
    Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium Hydroxide as a Versatile Nanofiller for 3D-Printed PLA Bone Scaffolds.
    Guo W; Bu W; Mao Y; Wang E; Yang Y; Liu C; Guo F; Mai H; You H; Long Y
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38256997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering.
    Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M
    Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles.
    Saberi A; Behnamghader A; Aghabarari B; Yousefi A; Majda D; Huerta MVM; Mozafari M
    Int J Biol Macromol; 2022 May; 207():9-22. PubMed ID: 35181332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.
    Liu Y; Huang Q; Feng Q
    Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism.
    Li X; Xu P; Cheng Y; Zhang W; Zheng B; Wang Q
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110749. PubMed ID: 32279810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications.
    Zarei M; Hasanzadeh Azar M; Sayedain SS; Shabani Dargah M; Alizadeh R; Arab M; Askarinya A; Kaviani A; Beheshtizadeh N; Azami M
    Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryogenic 3D printing of modified polylactic acid scaffolds with biomimetic nanofibrous architecture for bone tissue engineering.
    Xu D; Chen S; Xie C; Liang Q; Xiao X
    J Biomater Sci Polym Ed; 2022 Mar; 33(4):532-549. PubMed ID: 34704534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli.
    Bernardo MP; da Silva BCR; Hamouda AEI; de Toledo MAS; Schalla C; Rütten S; Goetzke R; Mattoso LHC; Zenke M; Sechi A
    Sci Rep; 2022 Feb; 12(1):2333. PubMed ID: 35149687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.