BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 37150587)

  • 1. Spatial transcriptomics in human skin research.
    Tekkela S; Theocharidis G; McGrath JA; Onoufriadis A
    Exp Dermatol; 2023 Jun; 32(6):731-739. PubMed ID: 37150587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell transcriptomics in human skin research: available technologies, technical considerations and disease applications.
    Theocharidis G; Tekkela S; Veves A; McGrath JA; Onoufriadis A
    Exp Dermatol; 2022 May; 31(5):655-673. PubMed ID: 35196402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology.
    Saviano A; Henderson NC; Baumert TF
    J Hepatol; 2020 Nov; 73(5):1219-1230. PubMed ID: 32534107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights from spatial transcriptome analysis in solid tumors.
    Du J; An ZJ; Huang ZF; Yang YC; Zhang MH; Fu XH; Shi WY; Hou J
    Int J Biol Sci; 2023; 19(15):4778-4792. PubMed ID: 37781515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An introduction to spatial transcriptomics for biomedical research.
    Williams CG; Lee HJ; Asatsuma T; Vento-Tormo R; Haque A
    Genome Med; 2022 Jun; 14(1):68. PubMed ID: 35761361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics Experiments: Review, Tutorial, and Perspectives.
    Jeon H; Xie J; Jeon Y; Jung KJ; Gupta A; Chang W; Chung D
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPASCER: spatial transcriptomics annotation at single-cell resolution.
    Fan Z; Luo Y; Lu H; Wang T; Feng Y; Zhao W; Kim P; Zhou X
    Nucleic Acids Res; 2023 Jan; 51(D1):D1138-D1149. PubMed ID: 36243975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Transcriptomics: Emerging Technologies in Tissue Gene Expression Profiling.
    Robles-Remacho A; Sanchez-Martin RM; Diaz-Mochon JJ
    Anal Chem; 2023 Oct; 95(42):15450-15460. PubMed ID: 37814884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in spatial transcriptomics and related data analysis strategies.
    Du J; Yang YC; An ZJ; Zhang MH; Fu XH; Huang ZF; Yuan Y; Hou J
    J Transl Med; 2023 May; 21(1):330. PubMed ID: 37202762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics.
    Shen X; Zhao Y; Wang Z; Shi Q
    Lab Chip; 2022 Dec; 22(24):4774-4791. PubMed ID: 36254761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially Resolved Transcriptomics Technology Facilitates Cancer Research.
    Wang Q; Zhi Y; Zi M; Mo Y; Wang Y; Liao Q; Zhang S; Gong Z; Wang F; Zeng Z; Guo C; Xiong W
    Adv Sci (Weinh); 2023 Oct; 10(30):e2302558. PubMed ID: 37632718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models.
    Gao D; Ning J; Liu G; Sun S; Dang X
    Front Genet; 2022; 13():893522. PubMed ID: 35692845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positional influence on cellular transcriptional identity revealed through spatially segmented single-cell transcriptomics.
    Morse DB; Michalowski AM; Ceribelli M; De Jonghe J; Vias M; Riley D; Davies-Hill T; Voss T; Pittaluga S; Muus C; Liu J; Boyle S; Weitz DA; Brenton JD; Buenrostro JD; Knowles TPJ; Thomas CJ
    Cell Syst; 2023 Jun; 14(6):464-481.e7. PubMed ID: 37348462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially informed cell-type deconvolution for spatial transcriptomics.
    Ma Y; Zhou X
    Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics.
    Liao J; Lu X; Shao X; Zhu L; Fan X
    Trends Biotechnol; 2021 Jan; 39(1):43-58. PubMed ID: 32505359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies.
    Wang R; Peng G; Tam PPL; Jing N
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):13-23. PubMed ID: 35901961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell and spatial transcriptomics approaches of cardiovascular development and disease.
    Roth R; Kim S; Kim J; Rhee S
    BMB Rep; 2020 Aug; 53(8):393-399. PubMed ID: 32684243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell RNA Sequencing for Plant Research: Insights and Possible Benefits.
    Bawa G; Liu Z; Yu X; Qin A; Sun X
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in deciphering hippocampus complexity using single-cell transcriptomics.
    Chang C; Zuo H; Li Y
    Neurobiol Dis; 2023 Apr; 179():106062. PubMed ID: 36878328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.