BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37150626)

  • 1. Targeting phagocytosis to enhance antitumor immunity.
    Huntoon K; Lee D; Dong S; Antony A; Kim BYS; Jiang W
    Trends Cancer; 2023 Aug; 9(8):650-665. PubMed ID: 37150626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phagocytosis checkpoints as new targets for cancer immunotherapy.
    Feng M; Jiang W; Kim BYS; Zhang CC; Fu YX; Weissman IL
    Nat Rev Cancer; 2019 Oct; 19(10):568-586. PubMed ID: 31462760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging phagocytosis checkpoints in cancer immunotherapy.
    Liu Y; Wang Y; Yang Y; Weng L; Wu Q; Zhang J; Zhao P; Fang L; Shi Y; Wang P
    Signal Transduct Target Ther; 2023 Mar; 8(1):104. PubMed ID: 36882399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.
    Liu B; Guo H; Xu J; Qin T; Guo Q; Gu N; Zhang D; Qian W; Dai J; Hou S; Wang H; Guo Y
    MAbs; 2018; 10(2):315-324. PubMed ID: 29182441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention.
    Zhou X; Liu X; Huang L
    Adv Funct Mater; 2021 Jan; 31(5):. PubMed ID: 33692665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing immune checkpoints in myeloid lineage cells for cancer immunotherapy.
    Park SY; Kim IS
    Cancer Lett; 2019 Jun; 452():51-58. PubMed ID: 30910590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD47/SIRPα pathway mediates cancer immune escape and immunotherapy.
    Jia X; Yan B; Tian X; Liu Q; Jin J; Shi J; Hou Y
    Int J Biol Sci; 2021; 17(13):3281-3287. PubMed ID: 34512146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lifting the innate immune barriers to antitumor immunity.
    Rothlin CV; Ghosh S
    J Immunother Cancer; 2020 Apr; 8(1):. PubMed ID: 32273348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Targeting of Innate and Adaptive Checkpoints on Tumor Cells Limits Immune Evasion.
    Liu X; Liu L; Ren Z; Yang K; Xu H; Luan Y; Fu K; Guo J; Peng H; Zhu M; Fu YX
    Cell Rep; 2018 Aug; 24(8):2101-2111. PubMed ID: 30134171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy.
    Wang H; Sun Y; Zhou X; Chen C; Jiao L; Li W; Gou S; Li Y; Du J; Chen G; Zhai W; Wu Y; Qi Y; Gao Y
    J Immunother Cancer; 2020 Oct; 8(2):. PubMed ID: 33020240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity.
    Kuo TC; Chen A; Harrabi O; Sockolosky JT; Zhang A; Sangalang E; Doyle LV; Kauder SE; Fontaine D; Bollini S; Han B; Fu YX; Sim J; Pons J; Wan HI
    J Hematol Oncol; 2020 Nov; 13(1):160. PubMed ID: 33256806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: a review.
    Lecoultre M; Dutoit V; Walker PR
    J Immunother Cancer; 2020 Dec; 8(2):. PubMed ID: 33335026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy.
    Moradinasab S; Pourbagheri-Sigaroodi A; Ghaffari SH; Bashash D
    Int Immunopharmacol; 2022 Feb; 103():108499. PubMed ID: 34972068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promising Targets for Cancer Immunotherapy: TLRs, RLRs, and STING-Mediated Innate Immune Pathways.
    Li K; Qu S; Chen X; Wu Q; Shi M
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28216575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile.
    Kauder SE; Kuo TC; Harrabi O; Chen A; Sangalang E; Doyle L; Rocha SS; Bollini S; Han B; Sim J; Pons J; Wan HI
    PLoS One; 2018; 13(8):e0201832. PubMed ID: 30133535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.
    Lv M; Chen M; Zhang R; Zhang W; Wang C; Zhang Y; Wei X; Guan Y; Liu J; Feng K; Jing M; Wang X; Liu YC; Mei Q; Han W; Jiang Z
    Cell Res; 2020 Nov; 30(11):966-979. PubMed ID: 32839553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy.
    Li Z; Li Y; Gao J; Fu Y; Hua P; Jing Y; Cai M; Wang H; Tong T
    Life Sci; 2021 May; 273():119150. PubMed ID: 33662426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma.
    Wang Z; Wang Z; Li B; Wang S; Chen T; Ye Z
    Front Immunol; 2019; 10():1114. PubMed ID: 31156651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.
    Akalu YT; Rothlin CV; Ghosh S
    Immunol Rev; 2017 Mar; 276(1):165-177. PubMed ID: 28258690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The new progress in cancer immunotherapy.
    Shimu AS; Wei HX; Li Q; Zheng X; Li B
    Clin Exp Med; 2023 Jul; 23(3):553-567. PubMed ID: 36109471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.