BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37150777)

  • 1. Unexpected silicon localization in calcium carbonate exoskeleton of cultured and fossil coccolithophores.
    Bordiga M; Lupi C; Langer G; Gianoncelli A; Birarda G; Pollastri S; Bonanni V; Bedolla DE; Vaccari L; Gariani G; Cerino F; Cabrini M; Beran A; Zuccotti M; Fiorentino G; Zanoni M; Garagna S; Cobianchi M; Di Giulio A
    Sci Rep; 2023 May; 13(1):7417. PubMed ID: 37150777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coccolith crystals: Pure calcite or organic-mineral composite structures?
    Walker JM; Langer G
    Acta Biomater; 2021 Apr; 125():83-89. PubMed ID: 33631395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An uneven distribution of strontium in the coccolithophore
    Walker JM; Greene HJM; Moazzam Y; Quinn PD; Parker JE; Langer G
    Environ Sci Process Impacts; 2024 Jun; 26(6):966-974. PubMed ID: 38354057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice distortions in coccolith calcite crystals originate from occlusion of biomacromolecules.
    Hood MA; Leemreize H; Scheffel A; Faivre D
    J Struct Biol; 2016 Nov; 196(2):147-154. PubMed ID: 27645701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coccolithophore calcification: Changing paradigms in changing oceans.
    Brownlee C; Langer G; Wheeler GL
    Acta Biomater; 2021 Jan; 120():4-11. PubMed ID: 32763469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of silicon in the development of complex crystal shapes in coccolithophores.
    Langer G; Taylor AR; Walker CE; Meyer EM; Ben Joseph O; Gal A; Harper GM; Probert I; Brownlee C; Wheeler GL
    New Phytol; 2021 Sep; 231(5):1845-1857. PubMed ID: 33483994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.
    Yin X; Ziegler A; Kelm K; Hoffmann R; Watermeyer P; Alexa P; Villinger C; Rupp U; Schlüter L; Reusch TBH; Griesshaber E; Walther P; Schmahl WW
    J Phycol; 2018 Feb; 54(1):85-104. PubMed ID: 29092105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica.
    Triccas A; Laidlaw F; Singleton MR; Nudelman F
    J Struct Biol; 2024 Mar; 216(1):108066. PubMed ID: 38350555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-scale spatial assessment of calcium distribution in coccolithophores using synchrotron-based nano-CT and STXM-NEXAFS.
    Sun S; Yao Y; Zou X; Fan S; Zhou Q; Dai Q; Dong F; Liu M; Nie X; Tan D; Li S
    Int J Mol Sci; 2014 Dec; 15(12):23604-15. PubMed ID: 25530614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of cytoskeleton inhibitors on coccolith morphology in Coccolithus braarudii and Scyphosphaera apsteinii.
    Langer G; Probert I; Cox MB; Taylor A; Harper GM; Brownlee C; Wheeler G
    J Phycol; 2023 Feb; 59(1):87-96. PubMed ID: 36380706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the molecular mechanisms of silicon uptake in coccolithophores.
    Ratcliffe S; Meyer EM; Walker CE; Knight M; McNair HM; Matson PG; Iglesias-Rodriguez D; Brzezinski M; Langer G; Sadekov A; Greaves M; Brownlee C; Curnow P; Taylor AR; Wheeler GL
    Environ Microbiol; 2023 Feb; 25(2):315-330. PubMed ID: 36397254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution spatial analyses of trace elements in coccoliths reveal new insights into element incorporation in coccolithophore calcite.
    Bottini C; Dapiaggi M; Erba E; Faucher G; Rotiroti N
    Sci Rep; 2020 Jun; 10(1):9825. PubMed ID: 32555319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of living coccolithophores in eastern Indian Ocean during spring intermonsoon.
    Liu H; Sun J; Wang D; Zhang X; Zhang C; Song S; Thangaraj S
    Sci Rep; 2018 Aug; 8(1):12488. PubMed ID: 30131499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological development of Pleurochrysis carterae coccoliths examined by cryo-electron tomography.
    Walker JM; Marzec B; Ozaki N; Clare D; Nudelman F
    J Struct Biol; 2020 Apr; 210(1):107476. PubMed ID: 32018012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for diatom-like silicon transporters in calcifying coccolithophores.
    Durak GM; Taylor AR; Walker CE; Probert I; de Vargas C; Audic S; Schroeder D; Brownlee C; Wheeler GL
    Nat Commun; 2016 Feb; 7():10543. PubMed ID: 26842659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coccolithophore Cell Biology: Chalking Up Progress.
    Taylor AR; Brownlee C; Wheeler G
    Ann Rev Mar Sci; 2017 Jan; 9():283-310. PubMed ID: 27814031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable isotope fractionation of strontium in coccolithophore calcite: Influence of temperature and carbonate chemistry.
    Müller MN; Krabbenhöft A; Vollstaedt H; Brandini FP; Eisenhauer A
    Geobiology; 2018 May; 16(3):297-306. PubMed ID: 29431278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology.
    Wheeler GL; Sturm D; Langer G
    J Phycol; 2023 Dec; 59(6):1123-1129. PubMed ID: 37983837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Intracellular Ion Pools in Coccolithophores Using Live-Cell Imaging.
    Peled-Zehavi H; Gal A
    Adv Biol (Weinh); 2021 Jun; 5(6):e2000296. PubMed ID: 33852773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo-cell volume.
    Müller MN; Brandini FP; Trull TW; Hallegraeff GM
    Geobiology; 2021 Jan; 19(1):63-74. PubMed ID: 32931664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.