These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37150778)

  • 1. CosTaL: an accurate and scalable graph-based clustering algorithm for high-dimensional single-cell data analysis.
    Li Y; Nguyen J; Anastasiu DC; Arriaga EA
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37150778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Clustering Based on Shared Nearest Neighbor and Graph Partitioning.
    Zhu X; Zhang J; Xu Y; Wang J; Peng X; Li HD
    Interdiscip Sci; 2020 Jun; 12(2):117-130. PubMed ID: 32086753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical assessment of clustering algorithms to improve cell clustering and identification in single-cell transcriptome study.
    Liang X; Cao L; Chen H; Wang L; Wang Y; Fu L; Tan X; Chen E; Ding Y; Tang J
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38168839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells.
    Stassen SV; Siu DMD; Lee KCM; Ho JWK; So HKH; Tsia KK
    Bioinformatics; 2020 May; 36(9):2778-2786. PubMed ID: 31971583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDSKNN
    Ren J; Lyu X; Guo J; Shi X; Zhou Y; Li Q
    J Transl Med; 2024 Mar; 22(1):233. PubMed ID: 38433205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCHNEL: scalable clustering of high dimensional single-cell data.
    Abdelaal T; de Raadt P; Lelieveldt BPF; Reinders MJT; Mahfouz A
    Bioinformatics; 2020 Dec; 36(Suppl_2):i849-i856. PubMed ID: 33381821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A graph-based gene selection method for medical diagnosis problems using a many-objective PSO algorithm.
    Azadifar S; Ahmadi A
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):333. PubMed ID: 34838034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph Clustering.
    Wang Y; Chang D; Fu Z; Zhao Y
    IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):7231-7237. PubMed ID: 36215388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data.
    Wei N; Nie Y; Liu L; Zheng X; Wu HJ
    PLoS Comput Biol; 2022 Dec; 18(12):e1010753. PubMed ID: 36469543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A portable clustering algorithm based on compact neighbors for face tagging.
    Pei S; Zhang Y; Wang R; Nie F
    Neural Netw; 2022 Oct; 154():508-520. PubMed ID: 35985274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HGC: fast hierarchical clustering for large-scale single-cell data.
    Zou Z; Hua K; Zhang X
    Bioinformatics; 2021 Nov; 37(21):3964-3965. PubMed ID: 34096998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ScGSLC: An unsupervised graph similarity learning framework for single-cell RNA-seq data clustering.
    Li J; Jiang W; Han H; Liu J; Liu B; Wang Y
    Comput Biol Chem; 2021 Feb; 90():107415. PubMed ID: 33307360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contextual Correlation Preserving Multiview Featured Graph Clustering.
    He T; Liu Y; Ko TH; Chan KCC; Ong YS
    IEEE Trans Cybern; 2020 Oct; 50(10):4318-4331. PubMed ID: 31329151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering gene expression data with a penalized graph-based metric.
    BayĆ” AE; Granitto PM
    BMC Bioinformatics; 2011 Jan; 12():2. PubMed ID: 21205299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.
    Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectory Algorithms to Infer Stem Cell Fate Decisions.
    Lummertz da Rocha E; Malleshaiah M
    Methods Mol Biol; 2019; 1975():193-209. PubMed ID: 31062311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning.
    Ha JS; Jeong H
    PLoS One; 2023; 18(4):e0284527. PubMed ID: 37058497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scGAMNN: Graph Antoencoder-Based Single-Cell RNA Sequencing Data Integration Algorithm Using Mutual Nearest Neighbors.
    Zhang B; Wu H; Wang Y; Xuan C; Gao J
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5665-5674. PubMed ID: 37656653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.