These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37150968)
41. Tandem Catalysis for Simultaneous Removal of NO Xing J; Chen J; Xue Q; Ye P; Liu H; Wang G; Zhou B; Mi J; Li J Environ Sci Technol; 2024 Aug; ():. PubMed ID: 39134451 [TBL] [Abstract][Full Text] [Related]
42. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Shen B; Liu T; Zhao N; Yang X; Deng L J Environ Sci (China); 2010; 22(9):1447-54. PubMed ID: 21174978 [TBL] [Abstract][Full Text] [Related]
43. Effective industrial regeneration of arsenic poisoning waste selective catalytic reduction catalyst: contaminants removal and activity recovery. Xue Y; Wang Y Environ Sci Pollut Res Int; 2018 Dec; 25(34):34114-34122. PubMed ID: 30284165 [TBL] [Abstract][Full Text] [Related]
44. Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. Li X; Li X; Li J; Hao J J Hazard Mater; 2016 Nov; 318():615-622. PubMed ID: 27474851 [TBL] [Abstract][Full Text] [Related]
45. Boosting SO Liu X; Wang P; Shen Y; Zheng L; Han L; Deng J; Zhang J; Wang A; Ren W; Gao F; Zhang D Environ Sci Technol; 2022 Aug; 56(16):11646-11656. PubMed ID: 35876848 [TBL] [Abstract][Full Text] [Related]
46. Effect of TiO2 surface properties on the SCR activity of NOx emission abatement catalyst. Ye DQ; Tian LQ; Liang H J Environ Sci (China); 2002 Oct; 14(4):530-5. PubMed ID: 12491728 [TBL] [Abstract][Full Text] [Related]
47. Effects of MoO Xu W; Gao L; Yang Y; Zhu T; Qi G Environ Sci Pollut Res Int; 2020 Aug; 27(24):30243-30253. PubMed ID: 32451898 [TBL] [Abstract][Full Text] [Related]
48. Like Cures like: Detoxification Effect between Alkali Metals and Sulfur over the V Xiong S; Chen J; Liu H; Chen X; Si W; Gong Z; Peng Y; Li J Environ Sci Technol; 2022 Mar; 56(6):3739-3747. PubMed ID: 35212519 [TBL] [Abstract][Full Text] [Related]
49. Effect of Catalyst Crystallinity on V-Based Selective Catalytic Reduction with Ammonia. Lee MS; Kim SI; Lee MJ; Ye B; Kim T; Kim HD; Lee JW; Lee DH Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34070897 [TBL] [Abstract][Full Text] [Related]
50. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst. Xu Z; Deng S; Yang Y; Zhang T; Cao Q; Huang J; Yu G Chemosphere; 2012 May; 87(9):1032-8. PubMed ID: 22280981 [TBL] [Abstract][Full Text] [Related]
51. Ammonium Ion Enhanced V Lee MS; Kim SI; Jeong B; Park JW; Kim T; Lee JW; Kwon G; Lee DH Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685118 [TBL] [Abstract][Full Text] [Related]
52. Removal of elemental mercury by TiO₂doped with WO₃ and V₂O₅ for their photo- and thermo-catalytic removal mechanisms. Shen H; Ie IR; Yuan CS; Hung CH; Chen WH Environ Sci Pollut Res Int; 2016 Mar; 23(6):5839-52. PubMed ID: 26590063 [TBL] [Abstract][Full Text] [Related]
53. Enhancement of the activity of Cu/TiO Liu YZ; Xu QY; Guo RT; Duan CP; Wu GL; Miao YF; Gu JW Environ Sci Pollut Res Int; 2020 Aug; 27(22):27663-27673. PubMed ID: 32394254 [TBL] [Abstract][Full Text] [Related]
54. Penetration of Arsenic and Deactivation of a Honeycomb V Chen G; Xiong S; Chen X; Chu X; Yin R; Liu C; Chen J; Li J Environ Sci Technol; 2021 Jun; ():. PubMed ID: 34137252 [TBL] [Abstract][Full Text] [Related]
55. Gas-Phase Regeneration of Metal-Poisoned V Wang S; Liu J; Jin Z; Guo S; Cheng D; Deng J; Zhang D Environ Sci Technol; 2024 Jul; ():. PubMed ID: 39013630 [TBL] [Abstract][Full Text] [Related]
56. Efficient synergistic catalysis of chlorinated aromatic hydrocarbons and NO Ma Y; Lai J; Wu J; Zhang H; Yan J; Li X; Lin X Chemosphere; 2023 Feb; 315():137640. PubMed ID: 36584823 [TBL] [Abstract][Full Text] [Related]
57. Polyol-Mediated Synthesis of V Lee MS; Choi YJ; Bak SJ; Son M; Shin J; Lee DH Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296834 [TBL] [Abstract][Full Text] [Related]
58. Interface sites on vanadia-based catalysts are highly active for NO Lv Z; He G; Zhang W; Liu J; Lian Z; Yang Y; Yan Z; Xu G; Shan W; Yu Y; He H J Environ Sci (China); 2024 Feb; 136():523-536. PubMed ID: 37923461 [TBL] [Abstract][Full Text] [Related]
59. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures. Cha W; Yun ST; Jurng J Phys Chem Chem Phys; 2014 Sep; 16(33):17900-7. PubMed ID: 25045767 [TBL] [Abstract][Full Text] [Related]
60. Anti-Poisoning Mechanisms of Sb on Vanadia-Based Catalysts for NO Yuan X; Peng Y; Zhu X; Wang H; Song Z; Si W; Wang Y; Li J Environ Sci Technol; 2023 Jul; 57(28):10211-10220. PubMed ID: 37427417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]