These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37151033)

  • 1. From Laves Phases to Quasicrystal Approximants in the Na-Au-Cd System.
    Arrieta R; Doan D; Brgoch J
    Inorg Chem; 2023 May; 62(18):6873-6881. PubMed ID: 37151033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laves phases, gamma-brass, and 2x2x2 superstructures: a new class of quasicrystal approximants and the suggestion of a new quasicrystal.
    Berger RF; Lee S; Johnson J; Nebgen B; So AC
    Chemistry; 2008; 14(22):6627-39. PubMed ID: 18604847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.
    Lin Q; Miller GJ
    Acc Chem Res; 2018 Jan; 51(1):49-58. PubMed ID: 29251496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfaces of complex intermetallic compounds: insights from density functional calculations.
    Hafner J; Krajčí M
    Acc Chem Res; 2014 Nov; 47(11):3378-84. PubMed ID: 24741993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyclusters and substitution effects in the Na-Au-Ga system: remarkable sodium bonding characteristics in polar intermetallics.
    Smetana V; Miller GJ; Corbett JD
    Inorg Chem; 2013 Nov; 52(21):12502-10. PubMed ID: 24138102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cd4Cu7As, the first representative of a fully ordered, orthorhombically distorted MgCu2 Laves phase.
    Osters O; Nilges T; Schöneich M; Schmidt P; Rothballer J; Pielnhofer F; Weihrich R
    Inorg Chem; 2012 Aug; 51(15):8119-27. PubMed ID: 22784329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two homologous intermetallic phases in the Na-Au-Zn system with sodium bound in unusual paired sites within 1D tunnels.
    Samal SL; Lin Q; Corbett JD
    Inorg Chem; 2012 Sep; 51(17):9395-402. PubMed ID: 22906420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic effects and gold site distributions: synthesis, structure, and bonding in a polar intermetallic Na6Cd16Au7.
    Samal SL; Corbett JD
    Inorg Chem; 2011 Aug; 50(15):7033-9. PubMed ID: 21728282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold tetrahedra as building blocks in K3Au5Tr (Tr = In, Tl) and Rb2Au3Tl and in other compounds: a broad group of electron-poor intermetallic phases.
    Li B; Kim SJ; Miller GJ; Corbett JD
    Inorg Chem; 2009 Jul; 48(14):6573-83. PubMed ID: 20507109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disordered structures of the TM-Mg-Zn 1/1 quasicrystal approximants (TM = Hf, Zr, or Ti) and chemical intergrowth.
    Gómez CP; Ohhashi S; Yamamoto A; Tsai AP
    Inorg Chem; 2008 Sep; 47(18):8258-66. PubMed ID: 18702481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster Formation in the Superconducting Complex Intermetallic Compound Be
    Amon A; Ormeci A; Bobnar M; Akselrud LG; Avdeev M; Gumeniuk R; Burkhardt U; Prots Y; Hennig C; Leithe-Jasper A; Grin Y
    Acc Chem Res; 2018 Feb; 51(2):214-222. PubMed ID: 29313671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploratory syntheses and structures of SrAu(4.3)In(1.7) and CaAg(3.5)In(1.9): electron-poor intermetallics with diversified polyanionic frameworks that are derived from the CaAu4In2 approximant.
    Lin Q; Corbett JD
    Inorg Chem; 2011 Nov; 50(21):11091-8. PubMed ID: 21988330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New roles for icosahedral clusters in intermetallic phases: micelle-like segregation of Ca-Cd and Cu-Cd interactions in Ca10Cd27Cu2.
    Hadler AB; Harris NA; Fredrickson DC
    J Am Chem Soc; 2013 Nov; 135(46):17369-78. PubMed ID: 24147875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntheses optimization, structural and thermoelectric properties of 1/1 Tsai-type quasicrystal approximants in RE-Au-SM systems (RE=Yb, Gd and SM=Si, Ge).
    Gebresenbut GH; Tamura R; Eklöf D; Gómez CP
    J Phys Condens Matter; 2013 Apr; 25(13):135402. PubMed ID: 23470452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Pressure-Derived Assembly Principles for Dodecagonal Quasicrystal Approximants and Other Complex Frank-Kasper Phases.
    Fredrickson RT; Fredrickson DC
    Inorg Chem; 2022 Nov; 61(44):17682-17691. PubMed ID: 36288381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyanionic Gold-Tin Bonding and Crystal Structure Preference in REAu
    Lotfi S; Oliynyk AO; Brgoch J
    Inorg Chem; 2018 Sep; 57(17):10736-10743. PubMed ID: 30118218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-induced Na-Au compounds with novel structural units and unique charge transfer.
    Du X; Lou H; Wang J; Yang G
    Phys Chem Chem Phys; 2021 Mar; 23(11):6455-6461. PubMed ID: 33725035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From simple to complex crystal chemistry in the RE-Au-Tt systems (RE = La, Ce, Pr, Nd; Tt = Ge, Pb).
    Lotfi S; Arrieta R; Peterson GGC; Delgado P; Brgoch J
    ACS Org Inorg Au; 2022 Aug; 2(4):318-326. PubMed ID: 36855595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Icosahedral Quasicrystal and Its 1/0 Crystalline Approximant in the Ca-Au-Al System.
    Pham J; Kreyssig A; Goldman AI; Miller GJ
    Inorg Chem; 2016 Oct; 55(20):10425-10437. PubMed ID: 27682453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximant phases and an icosahedral quasicrystal in the Ca-Au-Ga system: the influence of size of gallium versus indium.
    Lin Q; Corbett JD
    Inorg Chem; 2008 Sep; 47(17):7651-9. PubMed ID: 18672875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.