These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37151375)

  • 1. Predicting the metabolic cost of exoskeleton-assisted squatting using foot pressure features and machine learning.
    Ramadurai S; Jeong H; Kim M
    Front Robot AI; 2023; 10():1166248. PubMed ID: 37151375
    [No Abstract]   [Full Text] [Related]  

  • 2. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
    Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle coordination and recruitment during squat assistance using a robotic ankle-foot exoskeleton.
    Jeong H; Haghighat P; Kantharaju P; Jacobson M; Jeong H; Kim M
    Sci Rep; 2023 Jan; 13(1):1363. PubMed ID: 36693935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S; Malcolm P; Collins SH; De Clercq D
    J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot contact forces can be used to personalize a wearable robot during human walking.
    Jacobson M; Kantharaju P; Jeong H; Ryu JK; Park JJ; Chung HJ; Kim M
    Sci Rep; 2022 Jun; 12(1):10947. PubMed ID: 35768457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
    Luo S; Androwis G; Adamovich S; Su H; Nunez E; Zhou X
    Front Robot AI; 2021; 8():702845. PubMed ID: 34350214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure.
    Yang W; Zhang J; Zhang S; Yang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons.
    Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH
    J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Walking Economy With an Ankle Exoskeleton Prior to Human-in-the-Loop Optimization.
    Wang W; Chen J; Ding J; Zhang J; Liu J
    Front Neurorobot; 2021; 15():797147. PubMed ID: 35082609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy.
    Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking.
    Etenzi E; Borzuola R; Grabowski AM
    J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Experimental Evaluation of a Lower-Limb Exoskeleton for Assisting Workers With Motorized Tuning of Squat Heights.
    Tu Y; Zhu A; Song J; Zhang X; Cao G
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():184-193. PubMed ID: 35030082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.
    Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS
    Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Optimal Control Approaches for Predicting Active Knee-Ankle-Foot-Orthosis Motion for Individuals With Spinal Cord Injury.
    Febrer-Nafría M; Fregly BJ; Font-Llagunes JM
    Front Neurorobot; 2021; 15():748148. PubMed ID: 35140596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.