These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37151375)

  • 1. Predicting the metabolic cost of exoskeleton-assisted squatting using foot pressure features and machine learning.
    Ramadurai S; Jeong H; Kim M
    Front Robot AI; 2023; 10():1166248. PubMed ID: 37151375
    [No Abstract]   [Full Text] [Related]  

  • 2. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
    Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle coordination and recruitment during squat assistance using a robotic ankle-foot exoskeleton.
    Jeong H; Haghighat P; Kantharaju P; Jacobson M; Jeong H; Kim M
    Sci Rep; 2023 Jan; 13(1):1363. PubMed ID: 36693935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foot contact forces can be used to personalize a wearable robot during human walking.
    Jacobson M; Kantharaju P; Jeong H; Ryu JK; Park JJ; Chung HJ; Kim M
    Sci Rep; 2022 Jun; 12(1):10947. PubMed ID: 35768457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
    Luo S; Androwis G; Adamovich S; Su H; Nunez E; Zhou X
    Front Robot AI; 2021; 8():702845. PubMed ID: 34350214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating musculoskeletal simulation and machine learning: a hybrid approach for personalized ankle-foot exoskeleton assistance strategies.
    Zhang X; Li S; Ying Z; Shu L; Sugita N
    Front Bioeng Biotechnol; 2024; 12():1442606. PubMed ID: 39165405
    [No Abstract]   [Full Text] [Related]  

  • 7. Improving Walking Economy With an Ankle Exoskeleton Prior to Human-in-the-Loop Optimization.
    Wang W; Chen J; Ding J; Zhang J; Liu J
    Front Neurorobot; 2021; 15():797147. PubMed ID: 35082609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy.
    Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Experimental Evaluation of a Lower-Limb Exoskeleton for Assisting Workers With Motorized Tuning of Squat Heights.
    Tu Y; Zhu A; Song J; Zhang X; Cao G
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():184-193. PubMed ID: 35030082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Optimal Control Approaches for Predicting Active Knee-Ankle-Foot-Orthosis Motion for Individuals With Spinal Cord Injury.
    Febrer-Nafría M; Fregly BJ; Font-Llagunes JM
    Front Neurorobot; 2021; 15():748148. PubMed ID: 35140596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series.
    Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of Muscle-Activity-Based Cost Function in Human-in-the-Loop Optimization of Multi-Gait Ankle Exoskeleton Assistance.
    Han H; Wang W; Zhang F; Li X; Chen J; Han J; Zhang J
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():944-952. PubMed ID: 34014826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance.
    Liu L; Wei W; Zheng K; Diao Y; Wang Z; Li G; Zhao G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4501-4504. PubMed ID: 34892218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton.
    Galle S; Malcolm P; Derave W; De Clercq D
    Eur J Appl Physiol; 2014 Nov; 114(11):2341-51. PubMed ID: 25064193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton.
    Wang X; Guo S; Qu H; Song M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle strategy assistance to improve gait stability using controllers based on in-shoe center of pressure in 2 degree-of-freedom powered ankle-foot orthoses: a clinical study.
    Choi HS; Baek YS; In H
    J Neuroeng Rehabil; 2022 Oct; 19(1):114. PubMed ID: 36284358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.