These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37151505)

  • 1.
    Raza MT; Park SH
    ACS Omega; 2023 May; 8(17):15041-15051. PubMed ID: 37151505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of elementary functions
    Raza MT; Tandon A; Park S; Lee S; Nguyen TBN; Vu THN; Jo S; Nam Y; Jeon S; Jeong JH; Park SH
    Nanoscale; 2021 Dec; 13(46):19376-19384. PubMed ID: 34812465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Input/1-Output Logic Implementation Demonstrated by DNA Algorithmic Self-Assembly.
    Cho H; Mitta SB; Song Y; Son J; Park S; Ha TH; Park SH
    ACS Nano; 2018 May; 12(5):4369-4377. PubMed ID: 29683650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly.
    Park S; Tandon A; Raza MT; Lee S; Nguyen TBN; Vu THN; Ha TH; Park SH
    ACS Appl Bio Mater; 2022 Jan; 5(1):97-104. PubMed ID: 35014830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streptavidin-Decorated Algorithmic DNA Lattices Constructed by Substrate-Assisted Growth Method.
    Mitta SB; Han S; Vellampatti S; Tandon A; Shin J; Ha TH; Park SH
    ACS Biomater Sci Eng; 2018 Oct; 4(10):3617-3623. PubMed ID: 33450799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of Arithmetic Calculations by DNA Tile-Based Algorithmic Self-Assembly.
    Tandon A; Song Y; Mitta SB; Yoo S; Park S; Lee S; Raza MT; Ha TH; Park SH
    ACS Nano; 2020 May; 14(5):5260-5267. PubMed ID: 32159938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary representation of N (N = 1 or 2)-input and 1-output algorithmic self-assembly demonstrated by DNA.
    Park S; Tandon A; Cho HJ; Raza MT; Lee SJ; Chopade P; Ha TH; Park SH
    Nanotechnology; 2019 Nov; 31(8):085604. PubMed ID: 31689698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules.
    Mao C; LaBean TH; Relf JH; Seeman NC
    Nature; 2000 Sep; 407(6803):493-6. PubMed ID: 11028996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Turing patterns and their usage as sensors, memory arrays, and logic gates.
    Muzika F; Schreiber I
    J Chem Phys; 2013 Oct; 139(16):164108. PubMed ID: 24182005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.
    Kim J; Ha TH; Park SH
    Nanoscale; 2015 Aug; 7(29):12336-42. PubMed ID: 26147712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Complexity Analysis of Turing Machine tapes with Fixed Algorithmic Complexity Using the Best-Order Markov Model.
    Silva JM; Pinho E; Matos S; Pratas D
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithmic self-assembly of DNA Sierpinski triangles.
    Rothemund PW; Papadakis N; Winfree E
    PLoS Biol; 2004 Dec; 2(12):e424. PubMed ID: 15583715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA lattice growth with single, double, and triple double-crossover boundaries by stepwise self-assembly.
    Raza MT; Tandon A; Park S; Lee S; Nguyen TBN; Vu THN; Park SH
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36881902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments.
    Winfree E
    J Biomol Struct Dyn; 2000; 17 Suppl 1():263-70. PubMed ID: 22607433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular system for an exponentially fast growing programmable synthetic polymer.
    Dabby N; Barr A; Chen HL
    Sci Rep; 2023 Jul; 13(1):11295. PubMed ID: 37438350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Configuration Analysis of a Lizard Skin-like Pattern Formed by DNA Self-Assembly.
    Tandon A; Raza MT; Park S; Lee S; Nguyen TBN; Vu THN; Kim S; Ha TH; Park SH
    ACS Omega; 2021 Oct; 6(41):27038-27044. PubMed ID: 34693123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing exponentially faster: implementing a non-deterministic universal Turing machine using DNA.
    Currin A; Korovin K; Ababi M; Roper K; Kell DB; Day PJ; King RD
    J R Soc Interface; 2017 Mar; 14(128):. PubMed ID: 28250099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementing logical inference based on DNA assembly.
    Huang Y; Xu Y
    Biosystems; 2020 Dec; 198():104276. PubMed ID: 33068673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Informational properties of neural nets performing algorithmic and logical tasks.
    Ritz BM; Hofacker GL
    Biol Cybern; 1996 Jun; 74(6):549-55. PubMed ID: 8672562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turing patterns by supramolecular self-assembly of a single salphen building block.
    Escárcega-Bobadilla MV; Maldonado-Domínguez M; Romero-Ávila M; Zelada-Guillén GA
    iScience; 2022 Jul; 25(7):104545. PubMed ID: 35747384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.