These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37151512)

  • 1. Kinetic Study of Liquid-Phase Glycerol Hydrodeoxygenation into 1,2-Propanediol over CuPd/TiO
    Ardila A AN; Arriola-Villaseñor E; Barrera-Zapata R; Hernández J; Fuentes GA
    ACS Omega; 2023 May; 8(17):14907-14914. PubMed ID: 37151512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient TiO
    Mondach W; Chanklang S; Somchuea P; Witoon T; Chareonpanich M; Faungnawakij K; Sohn H; Seubsai A
    Sci Rep; 2021 Nov; 11(1):23042. PubMed ID: 34845268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature and Distribution of Cu and Pd Species in CuPd/TiO
    Ardila A AN; Arriola-Villaseñor E; Fuentes GA
    ACS Omega; 2020 Aug; 5(31):19497-19505. PubMed ID: 32803043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study.
    Md Rahim SAN; Lee CS; Aroua MK; Wan Daud WMA; Abnisa F; Cognet P; Pérès Y
    Front Chem; 2022; 10():845614. PubMed ID: 35281562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-Tin Nanoalloy Supported ZnO Catalysts from Mixed-Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1,2-Propanediol.
    Nimbalkar AS; Oh KR; Han SJ; Yun GN; Cha SH; Upare PP; Awad A; Hwang DW; Hwang YK
    ChemSusChem; 2024 Feb; 17(3):e202301315. PubMed ID: 37932870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenolysis of glycerol over TiO
    Wang Y; Zhou Z; Wang C; Zhao L; Xia Q
    Front Chem; 2022; 10():1004925. PubMed ID: 36212063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the Glycerol Hydrogenolysis Reaction on Cu, Cu-Zn, and Cu-ZnO Clusters.
    Singh R; Biswas P; Jha PK
    ACS Omega; 2022 Sep; 7(37):33629-33636. PubMed ID: 36157784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Catalyst Development of the Hydrogenolysis of Biomass-Based Glycerol into Propanediols-A Review.
    Ma L; Liu H; He D
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective hydrogenolysis of raw glycerol to 1,2-propanediol over Cu-ZnO catalysts in fixed-bed reactor.
    Gao Q; Xu B; Tong Q; Fan Y
    Biosci Biotechnol Biochem; 2016; 80(2):215-20. PubMed ID: 26428060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu/ZrO
    Liang Z; Li H; Xie J; Ye S; Zheng J; Zhang N
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol.
    Li H; Liao JC
    Microb Cell Fact; 2013 Jan; 12():4. PubMed ID: 23339487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts.
    Yuan Z; Wang J; Wang L; Xie W; Chen P; Hou Z; Zheng X
    Bioresour Technol; 2010 Sep; 101(18):7099-103. PubMed ID: 20434331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum.
    Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative reforming of crude glycerol to 1,3-propanediol using Clostridium butyricum strain L4.
    Gupta P; Kumar M; Gupta RP; Puri SK; Ramakumar SSV
    Chemosphere; 2022 Apr; 292():133426. PubMed ID: 34971623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenolysis of Glycerol to 1,2-Propanediol Over Clay Based Catalysts.
    Lee SY; Jung JS; Yang EH; Lee KY; Moon DJ
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8783-9. PubMed ID: 26726594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of substrate and product transport systems in Klebsiella pneumoniae to improve 1,3-propanediol production.
    Teng Y; Guo C; Xie M; Feng A; Lu X; Zong H; Zhuge B
    FEMS Microbiol Lett; 2022 Jul; 369(1):. PubMed ID: 35731629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose.
    Lama S; Seol E; Park S
    Bioresour Technol; 2017 Dec; 245(Pt B):1542-1550. PubMed ID: 28549809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield production of 1,3-propanediol from glycerol by metabolically engineered
    Lee JH; Jung MY; Oh MK
    Biotechnol Biofuels; 2018; 11():104. PubMed ID: 29657579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Pseudomonas denitrificans for the 1,3-propanediol production from glycerol.
    Zhou S; Lama S; Sankaranarayanan M; Park S
    Bioresour Technol; 2019 Nov; 292():121933. PubMed ID: 31404755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptability of Klebsiella pneumoniae 2e, a Newly Isolated 1,3-Propanediol-Producing Strain, to Crude Glycerol as Revealed by Genomic Profiling.
    Ma J; Jiang H; Hector SB; Xiao Z; Li J; Liu R; Li C; Zeng B; Liu GQ; Zhu Y
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30902851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.