BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37151872)

  • 1. Chronic stress promotes colorectal cancer progression by enhancing glycolysis through β2-AR/CREB1 signal pathway.
    Guan Y; Yao W; Yu H; Feng Y; Zhao Y; Zhan X; Wang Y
    Int J Biol Sci; 2023; 19(7):2006-2019. PubMed ID: 37151872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic restraint stress on human colorectal carcinoma growth in mice.
    Lin Q; Wang F; Yang R; Zheng X; Gao H; Zhang P
    PLoS One; 2013; 8(4):e61435. PubMed ID: 23585898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β2-AR-HIF-1α: a novel regulatory axis for stress-induced pancreatic tumor growth and angiogenesis.
    Shan T; Ma J; Ma Q; Guo K; Guo J; Li X; Li W; Liu J; Huang C; Wang F; Wu E
    Curr Mol Med; 2013 Jul; 13(6):1023-34. PubMed ID: 23745588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective β2-AR Blockage Suppresses Colorectal Cancer Growth Through Regulation of EGFR-Akt/ERK1/2 Signaling, G1-Phase Arrest, and Apoptosis.
    Chin CC; Li JM; Lee KF; Huang YC; Wang KC; Lai HC; Cheng CC; Kuo YH; Shi CS
    J Cell Physiol; 2016 Feb; 231(2):459-72. PubMed ID: 26189563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S100A2 promotes glycolysis and proliferation via GLUT1 regulation in colorectal cancer.
    Li C; Chen Q; Zhou Y; Niu Y; Wang X; Li X; Zheng H; Wei T; Zhao L; Gao H
    FASEB J; 2020 Oct; 34(10):13333-13344. PubMed ID: 32816365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone demethylase JMJD2D activates HIF1 signaling pathway via multiple mechanisms to promote colorectal cancer glycolysis and progression.
    Peng K; Zhuo M; Li M; Chen Q; Mo P; Yu C
    Oncogene; 2020 Nov; 39(47):7076-7091. PubMed ID: 32989255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. m
    Shen C; Xuan B; Yan T; Ma Y; Xu P; Tian X; Zhang X; Cao Y; Ma D; Zhu X; Zhang Y; Fang JY; Chen H; Hong J
    Mol Cancer; 2020 Apr; 19(1):72. PubMed ID: 32245489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PLOD2 promotes aerobic glycolysis and cell progression in colorectal cancer by upregulating HK2.
    Du W; Liu N; Zhang Y; Liu X; Yang Y; Chen W; He Y
    Biochem Cell Biol; 2020 Jun; 98(3):386-395. PubMed ID: 31742425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer.
    Jing Z; Liu Q; He X; Jia Z; Xu Z; Yang B; Liu P
    J Exp Clin Cancer Res; 2022 Jun; 41(1):198. PubMed ID: 35689245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis.
    Hu T; Liu H; Liang Z; Wang F; Zhou C; Zheng X; Zhang Y; Song Y; Hu J; He X; Xiao J; King RJ; Wu X; Lan P
    Theranostics; 2020; 10(9):4056-4072. PubMed ID: 32226539
    [No Abstract]   [Full Text] [Related]  

  • 11. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy.
    Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL
    J Cell Physiol; 2018 Jan; 234(1):348-368. PubMed ID: 30069931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENO3 promotes colorectal cancer progression by enhancing cell glycolysis.
    Chen J; Zhang Z; Ni J; Sun J; Ju F; Wang Z; Wang L; Xue M
    Med Oncol; 2022 Apr; 39(5):80. PubMed ID: 35477821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CPT2 downregulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism.
    Li H; Chen J; Liu J; Lai Y; Huang S; Zheng L; Fan N
    Exp Cell Res; 2021 Dec; 409(1):112892. PubMed ID: 34688609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SETD8 promotes glycolysis in colorectal cancer via regulating HIF1α/HK2 axis.
    Ke B; Ye K
    Tissue Cell; 2023 Jun; 82():102065. PubMed ID: 36921492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deprogramming metabolism in pancreatic cancer with a bi-functional GPR55 inhibitor and biased β
    Wnorowski A; Dudzik D; Bernier M; Wójcik J; Keijzers G; Diaz-Ruiz A; Mazur K; Zhang Y; Han H; Scheibye-Knudsen M; Jozwiak K; Barbas C; Wainer IW
    Sci Rep; 2022 Mar; 12(1):3618. PubMed ID: 35256673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FOXE1 represses cell proliferation and Warburg effect by inhibiting HK2 in colorectal cancer.
    Dai W; Meng X; Mo S; Xiang W; Xu Y; Zhang L; Wang R; Li Q; Cai G
    Cell Commun Signal; 2020 Jan; 18(1):7. PubMed ID: 31918722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis.
    Liu W; Li W; Liu H; Yu X
    Int J Biol Sci; 2019; 15(11):2497-2508. PubMed ID: 31595166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STK25-induced inhibition of aerobic glycolysis via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal cancer.
    Wu F; Gao P; Wu W; Wang Z; Yang J; Di J; Jiang B; Su X
    J Exp Clin Cancer Res; 2018 Jul; 37(1):144. PubMed ID: 29996891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEX3A promotes angiogenesis in colorectal cancer via glycolysis.
    Lu Y; Bi T; Zhou S; Guo M
    Libyan J Med; 2023 Dec; 18(1):2202446. PubMed ID: 37155144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. circ_0136666 Facilitates the Progression of Colorectal Cancer via miR-383/CREB1 Axis.
    Li Y; Zang H; Zhang X; Huang G
    Cancer Manag Res; 2020; 12():6795-6806. PubMed ID: 32821160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.