These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37152675)

  • 1. Rapid growth of Aitken-mode particles during Arctic summer by fog chemical processing and its implication.
    Kecorius S; Hoffmann EH; Tilgner A; Barrientos-Velasco C; van Pinxteren M; Zeppenfeld S; Vogl T; Madueño L; Lovrić M; Wiedensohler A; Kulmala M; Paasonen P; Herrmann H
    PNAS Nexus; 2023 May; 2(5):pgad124. PubMed ID: 37152675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition.
    Karlsson L; Baccarini A; Duplessis P; Baumgardner D; Brooks IM; Chang RY; Dada L; Dällenbach KR; Heikkinen L; Krejci R; Leaitch WR; Leck C; Partridge DG; Salter ME; Wernli H; Wheeler MJ; Schmale J; Zieger P
    J Geophys Res Atmos; 2022 Jun; 127(11):e2021JD036383. PubMed ID: 35859907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Novel Molecular-Level Chemical Composition Observations of High Arctic Organic Aerosol for Predictions of Cloud Condensation Nuclei.
    Siegel K; Neuberger A; Karlsson L; Zieger P; Mattsson F; Duplessis P; Dada L; Daellenbach K; Schmale J; Baccarini A; Krejci R; Svenningsson B; Chang R; Ekman AML; Riipinen I; Mohr C
    Environ Sci Technol; 2022 Oct; 56(19):13888-13899. PubMed ID: 36112784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The striking effect of vertical mixing in the planetary boundary layer on new particle formation in the Yangtze River Delta.
    Lai S; Hai S; Gao Y; Wang Y; Sheng L; Lupascu A; Ding A; Nie W; Qi X; Huang X; Chi X; Zhao C; Zhao B; Shrivastava M; Fast JD; Yao X; Gao H
    Sci Total Environ; 2022 Jul; 829():154607. PubMed ID: 35306072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions.
    Baccarini A; Karlsson L; Dommen J; Duplessis P; Vüllers J; Brooks IM; Saiz-Lopez A; Salter M; Tjernström M; Baltensperger U; Zieger P; Schmale J
    Nat Commun; 2020 Oct; 11(1):4924. PubMed ID: 33004812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation.
    Fanourgakis GS; Kanakidou M; Nenes A; Bauer SE; Bergman T; Carslaw KS; Grini A; Hamilton DS; Johnson JS; Karydis VA; Kirkevåg A; Kodros JK; Lohmann U; Luo G; Makkonen R; Matsui H; Neubauer D; Pierce JR; Schmale J; Stier P; Tsigaridis K; van Noije T; Wang H; Watson-Parris D; Westervelt DM; Yang Y; Yoshioka M; Daskalakis N; Decesari S; Gysel-Beer M; Kalivitis N; Liu X; Mahowald NM; Myriokefalitakis S; Schrödner R; Sfakianaki M; Tsimpidi AP; Wu M; Yu F
    Atmos Chem Phys; 2019 Jul; 19(13):8591-8617. PubMed ID: 33273898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
    Kravitz B; Wang H; Rasch PJ; Morrison H; Solomon AB
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2031):. PubMed ID: 25404677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.
    Carlton AG; Christiansen AE; Flesch MM; Hennigan CJ; Sareen N
    Acc Chem Res; 2020 Sep; 53(9):1715-1723. PubMed ID: 32803954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixing state of size-selected submicrometer particles in the Arctic in May and September 2012.
    Park K; Kim G; Kim JS; Yoon YJ; Cho HJ; Ström J
    Environ Sci Technol; 2014 Jan; 48(2):909-19. PubMed ID: 24328132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of urban aerosols on the cloud condensation activity using a clustering model.
    Rejano F; Casquero-Vera JA; Lyamani H; Andrews E; Casans A; Pérez-Ramírez D; Alados-Arboledas L; Titos G; Olmo FJ
    Sci Total Environ; 2023 Feb; 858(Pt 1):159657. PubMed ID: 36306849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation properties of aerosol particles as cloud condensation nuclei at urban and high-altitude remote sites in southern Europe.
    Rejano F; Titos G; Casquero-Vera JA; Lyamani H; Andrews E; Sheridan P; Cazorla A; Castillo S; Alados-Arboledas L; Olmo FJ
    Sci Total Environ; 2021 Mar; 762():143100. PubMed ID: 33121775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arctic sea ice melt leads to atmospheric new particle formation.
    Dall Osto M; Beddows DCS; Tunved P; Krejci R; Ström J; Hansson HC; Yoon YJ; Park KT; Becagli S; Udisti R; Onasch T; O Dowd CD; Simó R; Harrison RM
    Sci Rep; 2017 Jun; 7(1):3318. PubMed ID: 28607400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of submicron aerosols over the Yellow Sea measured onboard the Gisang 1 research vessel in the spring of 2018 and 2019.
    Park M; Yum SS; Kim N; Jeong M; Yoo HJ; Kim JE; Park J; Lee M; Sung M; Ahn J
    Environ Pollut; 2021 Sep; 284():117180. PubMed ID: 33906041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II.
    Zelenyuk A; Imre D; Earle M; Easter R; Korolev A; Leaitch R; Liu P; Macdonald AM; Ovchinnikov M; Strapp W
    Anal Chem; 2010 Oct; 82(19):7943-51. PubMed ID: 20718425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large source of cloud condensation nuclei from new particle formation in the tropics.
    Williamson CJ; Kupc A; Axisa D; Bilsback KR; Bui T; Campuzano-Jost P; Dollner M; Froyd KD; Hodshire AL; Jimenez JL; Kodros JK; Luo G; Murphy DM; Nault BA; Ray EA; Weinzierl B; Wilson JC; Yu F; Yu P; Pierce JR; Brock CA
    Nature; 2019 Oct; 574(7778):399-403. PubMed ID: 31619794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of ionic pollutants except condensation nuclei of acid fog using an ultrasonic humidifier.
    Yoshimura K; Kikuchi R; Kimoto T; Ozeki T; Imano K; Kajikawa M; Ogawa N
    Anal Sci; 2006 Jun; 22(6):845-8. PubMed ID: 16772683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of ammonia for springtime atmospheric new particle formation and aerosol number abundance over the United States.
    Nair AA; Yu F; Luo G
    Sci Total Environ; 2023 Mar; 863():160756. PubMed ID: 36528105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect.
    Croft B; Wentworth GR; Martin RV; Leaitch WR; Murphy JG; Murphy BN; Kodros JK; Abbatt JP; Pierce JR
    Nat Commun; 2016 Nov; 7():13444. PubMed ID: 27845764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New particle formation and growth at a suburban site and a background site in Hong Kong.
    Lyu XP; Guo H; Cheng HR; Wang DW
    Chemosphere; 2018 Feb; 193():664-674. PubMed ID: 29172157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical profile of particle hygroscopicity and CCN effectiveness during winter in Beijing: insight into the hygroscopicity transition threshold of black carbon.
    Hu D; Wang Y; Yu C; Xie Q; Yue S; Shang D; Fang X; Joshi R; Liu D; Allan J; Wu Z; Hu M; Fu P; McFiggans G
    Faraday Discuss; 2021 Mar; 226():239-254. PubMed ID: 33241817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.