BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37152679)

  • 1.
    Zhang S; Yang X; Dong H; Xu B; Wu L; Zhang J; Li G; Guo P; Li L; Fu Y; Du Y; Zhu Y; Shi J; Shi F; Huang J; He H; Jin Y
    PNAS Nexus; 2023 May; 2(5):pgad135. PubMed ID: 37152679
    [No Abstract]   [Full Text] [Related]  

  • 2. Self-avoidance alone does not explain the function of Dscam1 in mushroom body axonal wiring.
    Dong H; Guo P; Zhang J; Wu L; Fu Y; Li L; Zhu Y; Du Y; Shi J; Zhang S; Li G; Xu B; Bian L; Zhu X; You W; Shi F; Yang X; Huang J; Jin Y
    Curr Biol; 2022 Jul; 32(13):2908-2920.e4. PubMed ID: 35659864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic CRISPR screen reveals redundant and specific roles for Dscam1 isoform diversity in neuronal wiring.
    Dong H; Yang X; Wu L; Zhang S; Zhang J; Guo P; Du Y; Pan C; Fu Y; Li L; Shi J; Zhu Y; Ma H; Bian L; Xu B; Li G; Shi F; Huang J; He H; Jin Y
    PLoS Biol; 2023 Jul; 21(7):e3002197. PubMed ID: 37410725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dscam1 is required for normal dendrite growth and branching but not for dendritic spacing in Drosophila motoneurons.
    Hutchinson KM; Vonhoff F; Duch C
    J Neurosci; 2014 Jan; 34(5):1924-31. PubMed ID: 24478371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intron-targeted mutagenesis reveals roles for Dscam1 RNA pairing architecture-driven splicing bias in neuronal wiring.
    Hong W; Zhang J; Dong H; Shi Y; Ma H; Zhou F; Xu B; Fu Y; Zhang S; Hou S; Li G; Wu Y; Chen S; Zhu X; You W; Shi F; Yang X; Gong Z; Huang J; Jin Y
    Cell Rep; 2021 Jul; 36(2):109373. PubMed ID: 34260933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms.
    Hattori D; Chen Y; Matthews BJ; Salwinski L; Sabatti C; Grueber WB; Zipursky SL
    Nature; 2009 Oct; 461(7264):644-8. PubMed ID: 19794492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-intrinsic requirement of Dscam1 isoform diversity for axon collateral formation.
    He H; Kise Y; Izadifar A; Urwyler O; Ayaz D; Parthasarthy A; Yan B; Erfurth ML; Dascenco D; Schmucker D
    Science; 2014 Jun; 344(6188):1182-6. PubMed ID: 24831526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dscam1 Has Diverse Neuron Type-Specific Functions in the Developing
    Wilhelm N; Kumari S; Krick N; Rickert C; Duch C
    eNeuro; 2022; 9(4):. PubMed ID: 35981870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of Dscam1 homodimerization: Insights into context constraint for protein recognition.
    Li SA; Cheng L; Yu Y; Wang JH; Chen Q
    Sci Adv; 2016 May; 2(5):e1501118. PubMed ID: 27386517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slit and Receptor Tyrosine Phosphatase 69D Confer Spatial Specificity to Axon Branching via Dscam1.
    Dascenco D; Erfurth ML; Izadifar A; Song M; Sachse S; Bortnick R; Urwyler O; Petrovic M; Ayaz D; He H; Kise Y; Thomas F; Kidd T; Schmucker D
    Cell; 2015 Aug; 162(5):1140-54. PubMed ID: 26317474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dscam1 overexpression impairs the function of the gut nervous system in Drosophila.
    Hernández K; Godoy L; Newquist G; Kellermeyer R; Alavi M; Mathew D; Kidd T
    Dev Dyn; 2023 Jan; 252(1):156-171. PubMed ID: 36454543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dscam1-mediated self-avoidance counters netrin-dependent targeting of dendrites in Drosophila.
    Matthews BJ; Grueber WB
    Curr Biol; 2011 Sep; 21(17):1480-7. PubMed ID: 21871804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chelicerata sDscam isoforms combine homophilic specificities to define unique cell recognition.
    Zhou F; Cao G; Dai S; Li G; Li H; Ding Z; Hou S; Xu B; You W; Wiseglass G; Shi F; Yang X; Rubinstein R; Jin Y
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24813-24824. PubMed ID: 32963097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.
    Armitage SA; Sun W; You X; Kurtz J; Schmucker D; Chen W
    PLoS One; 2014; 9(10):e108660. PubMed ID: 25310676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary chimeric isoforms reveal Dscam1 binding specificity in vivo.
    Wu W; Ahlsen G; Baker D; Shapiro L; Zipursky SL
    Neuron; 2012 Apr; 74(2):261-8. PubMed ID: 22542180
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Armitage SAO; Kurtz J; Brites D; Dong Y; Du Pasquier L; Wang HC
    Front Immunol; 2017; 8():662. PubMed ID: 28649249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjacent Neuronal Fascicle Guides Motoneuron 24 Dendritic Branching and Axonal Routing Decisions through Dscam1 Signaling.
    Bui KC; Kamiyama D
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis of self-avoidance.
    Zipursky SL; Grueber WB
    Annu Rev Neurosci; 2013 Jul; 36():547-68. PubMed ID: 23841842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic splicing of Dscam1 establishes identity at the level of single neurons.
    Miura SK; Martins A; Zhang KX; Graveley BR; Zipursky SL
    Cell; 2013 Nov; 155(5):1166-77. PubMed ID: 24267895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system.
    Lefebvre JL; Kostadinov D; Chen WV; Maniatis T; Sanes JR
    Nature; 2012 Aug; 488(7412):517-21. PubMed ID: 22842903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.