BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37152948)

  • 21. Regulation of RANKL-induced osteoclastogenesis by TGF-β through molecular interaction between Smad3 and Traf6.
    Yasui T; Kadono Y; Nakamura M; Oshima Y; Matsumoto T; Masuda H; Hirose J; Omata Y; Yasuda H; Imamura T; Nakamura K; Tanaka S
    J Bone Miner Res; 2011 Jul; 26(7):1447-56. PubMed ID: 21305609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo.
    Han B; Geng H; Liu L; Wu Z; Wang Y
    Biomed Pharmacother; 2020 Aug; 128():110305. PubMed ID: 32485573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-alpha with BCAR1 and Traf6.
    Robinson LJ; Yaroslavskiy BB; Griswold RD; Zadorozny EV; Guo L; Tourkova IL; Blair HC
    Exp Cell Res; 2009 Apr; 315(7):1287-301. PubMed ID: 19331827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myeloid zinc finger 1 knockdown promotes osteoclastogenesis and bone loss in part by regulating RANKL-induced ferroptosis of osteoclasts through Nrf2/GPX4 signaling pathway.
    Qu Z; Zhang B; Kong L; Zhang Y; Zhao Y; Gong Y; Gao X; Feng M; Zhang J; Yan L
    J Leukoc Biol; 2024 Apr; 115(5):946-957. PubMed ID: 38266238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation.
    Lee NK; Choi YG; Baik JY; Han SY; Jeong DW; Bae YS; Kim N; Lee SY
    Blood; 2005 Aug; 106(3):852-9. PubMed ID: 15817678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Receptor activator of NF-kappa B ligand stimulates recruitment of SHP-1 to the complex containing TNFR-associated factor 6 that regulates osteoclastogenesis.
    Zhang Z; Jimi E; Bothwell AL
    J Immunol; 2003 Oct; 171(7):3620-6. PubMed ID: 14500659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling.
    Kanzaki H; Shinohara F; Kajiya M; Kodama T
    J Biol Chem; 2013 Aug; 288(32):23009-20. PubMed ID: 23801334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors.
    Yao Z; Lei W; Duan R; Li Y; Luo L; Boyce BF
    J Biol Chem; 2017 Jun; 292(24):10169-10179. PubMed ID: 28438834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methylsulfonylmethane Inhibits RANKL-Induced Osteoclastogenesis in BMMs by Suppressing NF-κB and STAT3 Activities.
    Joung YH; Darvin P; Kang DY; Sp N; Byun HJ; Lee CH; Lee HK; Yang YM
    PLoS One; 2016; 11(7):e0159891. PubMed ID: 27447722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. (+)-Vitisin A inhibits osteoclast differentiation by preventing TRAF6 ubiquitination and TRAF6-TAK1 formation to suppress NFATc1 activation.
    Chiou WF; Huang YL; Liu YW
    PLoS One; 2014; 9(2):e89159. PubMed ID: 24558484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High mobility group box 1 protein regulates osteoclastogenesis through direct actions on osteocytes and osteoclasts in vitro.
    Davis HM; Valdez S; Gomez L; Malicky P; White FA; Subler MA; Windle JJ; Bidwell JP; Bruzzaniti A; Plotkin LI
    J Cell Biochem; 2019 Oct; 120(10):16741-16749. PubMed ID: 31106449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells.
    Li DZ; Zhang QX; Dong XX; Li HD; Ma X
    J Bone Miner Metab; 2014 Sep; 32(5):494-504. PubMed ID: 24196871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of lipopolysaccharide on osteoclasts formation and bone resorption function and its mechanism].
    Zeng L; Xu Y; Xing G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 May; 32(5):568-574. PubMed ID: 29806344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Curcumin suppresses RANKL-induced osteoclast precursor autophagy in osteoclastogenesis by inhibiting RANK signaling and downstream JNK-BCL2-Beclin1 pathway.
    Ke D; Xu H; Han J; Dai H; Wang X; Luo J; Yu Y; Xu J
    Biomed J; 2024 Feb; 47(1):100605. PubMed ID: 37179010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finding a Toll on the Route: The Fate of Osteoclast Progenitors After Toll-Like Receptor Activation.
    Souza PPC; Lerner UH
    Front Immunol; 2019; 10():1663. PubMed ID: 31379855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell adhesion signaling regulates RANK expression in osteoclast precursors.
    Mochizuki A; Takami M; Miyamoto Y; Nakamaki T; Tomoyasu S; Kadono Y; Tanaka S; Inoue T; Kamijo R
    PLoS One; 2012; 7(11):e48795. PubMed ID: 23139818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FTY720 inhibited proinflammatory cytokine release and osteoclastogenesis induced by Aggregatibacter actinomycetemcomitans.
    Yu H; Herbert BA; Valerio M; Yarborough L; Hsu LC; Argraves KM
    Lipids Health Dis; 2015 Jul; 14():66. PubMed ID: 26138336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cysteinyl leukotriene receptor 1 (cysLT1R) regulates osteoclast differentiation and bone resorption.
    Zheng C; Shi X
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S64-S70. PubMed ID: 30183378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo.
    Kim JY; Min JY; Baek JM; Ahn SJ; Jun HY; Yoon KH; Choi MK; Lee MS; Oh J
    Bone; 2015 Oct; 79():242-51. PubMed ID: 26103094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.