These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37153206)

  • 1. Disparities in the Impacts of the COVID-19 Pandemic on Public Transit Ridership in Austin, Texas, U.S.A.
    Jiao J; Hansen K; Azimian A
    Transp Res Rec; 2023 Apr; 2677(4):287-297. PubMed ID: 37153206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiple mediation analysis to untangle the impacts of COVID-19 on nationwide bus ridership in the United States.
    Ziedan A; Lima L; Brakewood C
    Transp Res Part A Policy Pract; 2023 Jul; 173():103718. PubMed ID: 37234751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Station-Level Effects of the COVID-19 Pandemic on Subway Ridership in the Seoul Metropolitan Area.
    Jun MJ; Yun MY
    Transp Res Rec; 2023 Apr; 2677(4):802-812. PubMed ID: 37153174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership.
    Lanza K; Durand CP
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33435530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of COVID-19 on Public Transit Accessibility and Ridership.
    Wilbur M; Ayman A; Sivagnanam A; Ouyang A; Poon V; Kabir R; Vadali A; Pugliese P; Freudberg D; Laszka A; Dubey A
    Transp Res Rec; 2023 Apr; 2677(4):531-546. PubMed ID: 38602901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pandemic transit: examining transit use changes and equity implications in Boston, Houston, and Los Angeles.
    Paul J; Taylor BD
    Transportation (Amst); 2022 Oct; ():1-29. PubMed ID: 36340503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Will transit recover? A retrospective study of nationwide ridership in the United States during the COVID-19 pandemic.
    Ziedan A; Brakewood C; Watkins K
    J Public Trans; 2023; 25():100046. PubMed ID: 37389199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining factors affecting public bike ridership and its spatial change before and after COVID-19.
    Kim J; Lee S
    Travel Behav Soc; 2023 Apr; 31():24-36. PubMed ID: 36405768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China.
    Jiang S; Cai C
    Transp Policy (Oxf); 2022 Oct; 127():158-170. PubMed ID: 36097611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neighborhood, built environment and resilience in transportation during the COVID-19 pandemic.
    Xiao W; Wei YD; Wu Y
    Transp Res D Transp Environ; 2022 Sep; 110():103428. PubMed ID: 35975170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covid-19 pandemic impacts on essential transit riders: Findings from a U.S. Survey.
    He Q; Rowangould D; Karner A; Palm M; LaRue S
    Transp Res D Transp Environ; 2022 Apr; 105():103217. PubMed ID: 35194378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City.
    Wang H; Noland RB
    Transp Policy (Oxf); 2021 Jun; 106():262-270. PubMed ID: 34975237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Executive orders or public fear: What caused transit ridership to drop in Chicago during COVID-19?
    Osorio J; Liu Y; Ouyang Y
    Transp Res D Transp Environ; 2022 Apr; 105():103226. PubMed ID: 36570332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Public transit cuts during COVID-19 compound social vulnerability in 22 US cities.
    Kar A; Carrel AL; Miller HJ; Le HTK
    Transp Res D Transp Environ; 2022 Sep; 110():103435. PubMed ID: 35996657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Stationary Time Series Model for Station-Based Subway Ridership During COVID-19 Pandemic: Case Study of New York City.
    Moghimi B; Kamga C; Safikhani A; Mudigonda S; Vicuna P
    Transp Res Rec; 2023 Apr; 2677(4):463-477. PubMed ID: 37153164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transportation assimilation revisited: New evidence from repeated cross-sectional survey data.
    Xu D
    PLoS One; 2018; 13(4):e0194296. PubMed ID: 29668676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The TROLLEY Study: assessing travel, health, and equity impacts of a new light rail transit investment during the COVID-19 pandemic.
    Crist K; Benmarhnia T; Frank LD; Song D; Zunshine E; Sallis JF
    BMC Public Health; 2022 Aug; 22(1):1475. PubMed ID: 35918683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of COVID-19 on urban rail transit ridership using the Synthetic Control Method.
    Xin M; Shalaby A; Feng S; Zhao H
    Transp Policy (Oxf); 2021 Sep; 111():1-16. PubMed ID: 36568355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding changing public transit travel patterns of urban visitors during COVID-19: A multi-stage study.
    Lin Y; Xu Y; Zhao Z; Park S; Su S; Ren M
    Travel Behav Soc; 2023 Jul; 32():100587. PubMed ID: 37153378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating public transit agency responses to the Covid-19 pandemic in seven U.S. regions.
    Karner A; LaRue S; Klumpenhouwer W; Rowangould D
    Case Stud Transp Policy; 2023 Jun; 12():100989. PubMed ID: 36910544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.