These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37153378)

  • 21. Travel changes and equitable access to urban parks in the post COVID-19 pandemic period: Evidence from Wuhan, China.
    Zhang W; Li S; Gao Y; Liu W; Jiao Y; Zeng C; Gao L; Wang T
    J Environ Manage; 2022 Feb; 304():114217. PubMed ID: 34883435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transportation in the Mediterranean during the COVID-19 pandemic era.
    Tarasi D; Daras T; Tournaki S; Tsoutsos T
    Glob Transit; 2021; 3():55-71. PubMed ID: 34927039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal dynamics of public transportation ridership in Seoul before, during, and after COVID-19 from urban resilience perspective.
    Lee S; Kim J; Cho K
    Sci Rep; 2024 Apr; 14(1):8981. PubMed ID: 38637570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the potential role of bikeshare to complement public transit: The case of San Francisco amid the coronavirus crisis.
    Qian X; Jaller M; Circella G
    Cities; 2023 Jun; 137():104290. PubMed ID: 37020666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City.
    Wang H; Noland RB
    Transp Policy (Oxf); 2021 Jun; 106():262-270. PubMed ID: 34975237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Will transit recover? A retrospective study of nationwide ridership in the United States during the COVID-19 pandemic.
    Ziedan A; Brakewood C; Watkins K
    J Public Trans; 2023; 25():100046. PubMed ID: 37389199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding individual-level travel behavior changes due to COVID-19: Trip frequency, trip regularity, and trip distance.
    Lee S; Ko E; Jang K; Kim S
    Cities; 2023 Apr; 135():104223. PubMed ID: 36741336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of COVID-19 on trips to urban amenities: Examining travel behavior changes in Somerville, MA.
    Sevtsuk A; Hudson A; Halpern D; Basu R; Ng K; de Jong J
    PLoS One; 2021; 16(9):e0252794. PubMed ID: 34469450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobility in pandemic times: Exploring changes and long-term effects of COVID-19 on urban mobility behavior.
    Kellermann R; Sivizaca Conde D; Rößler D; Kliewer N; Dienel HL
    Transp Res Interdiscip Perspect; 2022 Sep; 15():100668. PubMed ID: 35971332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China.
    Jiang S; Cai C
    Transp Policy (Oxf); 2022 Oct; 127():158-170. PubMed ID: 36097611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Station-Level Effects of the COVID-19 Pandemic on Subway Ridership in the Seoul Metropolitan Area.
    Jun MJ; Yun MY
    Transp Res Rec; 2023 Apr; 2677(4):802-812. PubMed ID: 37153174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Travel pattern-based bus trip origin-destination estimation using smart card data.
    Lee I; Cho SH; Kim K; Kho SY; Kim DK
    PLoS One; 2022; 17(6):e0270346. PubMed ID: 35749407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-Stationary Time Series Model for Station-Based Subway Ridership During COVID-19 Pandemic: Case Study of New York City.
    Moghimi B; Kamga C; Safikhani A; Mudigonda S; Vicuna P
    Transp Res Rec; 2023 Apr; 2677(4):463-477. PubMed ID: 37153164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data.
    Mützel CM; Scheiner J
    Public Transp; 2022; 14(2):343-366. PubMed ID: 38624766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pandemic transit: examining transit use changes and equity implications in Boston, Houston, and Los Angeles.
    Paul J; Taylor BD
    Transportation (Amst); 2022 Oct; ():1-29. PubMed ID: 36340503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Protection Motivation Theory to Quantify the Impact of Pandemic Fear on Anticipated Postpandemic Transit Usage.
    Mashrur SM; Wang K; Loa P; Hossain S; Nurul Habib K
    Transp Res Rec; 2023 Apr; 2677(4):267-286. PubMed ID: 37153204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of mobility on COVID-19 spread - A time series analysis.
    Zargari F; Aminpour N; Ahmadian MA; Samimi A; Saidi S
    Transp Res Interdiscip Perspect; 2022 Mar; 13():100567. PubMed ID: 35187468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impacts of COVID-19 on urban rail transit ridership using the Synthetic Control Method.
    Xin M; Shalaby A; Feng S; Zhao H
    Transp Policy (Oxf); 2021 Sep; 111():1-16. PubMed ID: 36568355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19.
    Basu R; Ferreira J
    Transp Policy (Oxf); 2021 Mar; 103():197-210. PubMed ID: 36570707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of the COVID-19 pandemic on human-nature relations in a remote nature-based tourism destination.
    Mul E; Ancin Murguzur FJ; Hausner VH
    PLoS One; 2022; 17(9):e0273354. PubMed ID: 36174081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.