These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 37153583)
21. Immunomodulatory activity of puerarin in RAW264.7 macrophages and cyclophosphamide-induced immunosuppression mice. Chang Y; Guo A; Jing Y; Lin J; Sun Y; Kong L; Zheng H; Deng Y Immunopharmacol Immunotoxicol; 2021 Apr; 43(2):223-229. PubMed ID: 33583301 [TBL] [Abstract][Full Text] [Related]
22. Kang K; Deng X; Xie W; Chen J; Lin H; Chen Z Animals (Basel); 2023 Oct; 13(21):. PubMed ID: 37958131 [No Abstract] [Full Text] [Related]
23. Immune Modulatory Activities of Arginyl-Fructose (AF) and AF-Enriched Natural Products in In-Vitro and In-Vivo Animal Models. Yu JA; Lee JY; Kim TY; Kang H; Lee SY; Mitiku H; Park J; Lee YH; Chang HB; Lee BH; Lee K; Apostolidis E; Kwon YI Molecules; 2021 Apr; 26(8):. PubMed ID: 33924652 [TBL] [Abstract][Full Text] [Related]
24. Effects of Low Molecular Weight Peptides from Red Shrimp ( Zhao R; Jiang S; Tang Y; Ding G Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373442 [TBL] [Abstract][Full Text] [Related]
25. The Immuno-Enhancement Effects of Tubiechong Liu H; Yan Y; Zhang F; Wu Q Immunol Invest; 2019 Nov; 48(8):844-859. PubMed ID: 30917711 [TBL] [Abstract][Full Text] [Related]
26. Sarcodon imbricatus polysaccharides protect against cyclophosphamide-induced immunosuppression via regulating Nrf2-mediated oxidative stress. Wang X; Wang Z; Wu H; Jia W; Teng L; Song J; Yang X; Wang D Int J Biol Macromol; 2018 Dec; 120(Pt A):736-744. PubMed ID: 30171947 [TBL] [Abstract][Full Text] [Related]
27. Immunomodulatory mechanisms of an acidic polysaccharide from the fermented burdock residue by Rhizopus nigricans in RAW264.7 cells and cyclophosphamide-induced immunosuppressive mice. Xu X; Shao T; Meng Y; Liu C; Zhang P; Chen K Int J Biol Macromol; 2023 Dec; 252():126462. PubMed ID: 37619680 [TBL] [Abstract][Full Text] [Related]
28. The anti-inflammatory and anti-nociceptive effects of Korean black ginseng. Lee YY; Saba E; Irfan M; Kim M; Chan JY; Jeon BS; Choi SK; Rhee MH Phytomedicine; 2019 Feb; 54():169-181. PubMed ID: 30668366 [TBL] [Abstract][Full Text] [Related]
29. Panax ginseng is superior to vitamin E as a hepatoprotector against cyclophosphamide-induced liver damage. Abdelfattah-Hassan A; Shalaby SI; Khater SI; El-Shetry ES; Abd El Fadil H; Elsayed SA Complement Ther Med; 2019 Oct; 46():95-102. PubMed ID: 31519295 [TBL] [Abstract][Full Text] [Related]
30. Co-immunomodulatory Activities of Anionic Macromolecules Extracted from Kim JE; Monmai C; Rod-In W; Jang AY; You SG; Lee SM; Jung SK; Park WJ J Microbiol Biotechnol; 2020 Mar; 30(3):352-358. PubMed ID: 31893613 [TBL] [Abstract][Full Text] [Related]
31. Micronized, Heat-Treated Jung IS; Jeon MG; Oh DS; Jung YJ; Kim HS; Bae D; Kim Y; Lee GE; Choi C; Hwang YP J Med Food; 2019 Sep; 22(9):896-906. PubMed ID: 31216204 [TBL] [Abstract][Full Text] [Related]
32. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo. Yang S; Li F; Lu S; Ren L; Bian S; Liu M; Zhao D; Wang S; Wang J J Ethnopharmacol; 2022 Jan; 283():114739. PubMed ID: 34648903 [TBL] [Abstract][Full Text] [Related]
33. Water-soluble polysaccharides from Grifola Frondosa fruiting bodies protect against immunosuppression in cyclophosphamide-induced mice via JAK2/STAT3/SOCS signal transduction pathways. Meng M; Guo M; Feng C; Wang R; Cheng D; Wang C Food Funct; 2019 Aug; 10(8):4998-5007. PubMed ID: 31355400 [TBL] [Abstract][Full Text] [Related]
34. Improved protective effects of American ginseng berry against acetaminophen-induced liver toxicity through TNF-α-mediated caspase-3/-8/-9 signaling pathways. Xu XY; Wang Z; Ren S; Leng J; Hu JN; Liu Z; Chen C; Li W Phytomedicine; 2018 Dec; 51():128-138. PubMed ID: 30466610 [TBL] [Abstract][Full Text] [Related]
35. Panax ginseng aqueous extract prevents pneumococcal sepsis in vivo by potentiating cell survival and diminishing inflammation. Nguyen CT; Luong TT; Lee SY; Kim GL; Kwon H; Lee HG; Park CK; Rhee DK Phytomedicine; 2015 Oct; 22(11):1055-61. PubMed ID: 26407948 [TBL] [Abstract][Full Text] [Related]
36. Polysaccharides From the Roots of Chen X; Sun W; Xu B; Wu E; Cui Y; Hao K; Zhang G; Zhou C; Xu Y; Li J; Si H Front Immunol; 2021; 12():766296. PubMed ID: 34745141 [TBL] [Abstract][Full Text] [Related]
37. Se-enriched G. frondosa polysaccharide protects against immunosuppression in cyclophosphamide-induced mice via MAPKs signal transduction pathway. Li Q; Chen G; Chen H; Zhang W; Ding Y; Yu P; Zhao T; Mao G; Feng W; Yang L; Wu X Carbohydr Polym; 2018 Sep; 196():445-456. PubMed ID: 29891317 [TBL] [Abstract][Full Text] [Related]
38. Ovotransferrin enhances intestinal immune response in cyclophosphamide-induced immunosuppressed mice. Zhu G; Luo J; Du H; Jiang Y; Tu Y; Yao Y; Xu M Int J Biol Macromol; 2018 Dec; 120(Pt A):1-9. PubMed ID: 30114420 [TBL] [Abstract][Full Text] [Related]
39. American ginseng preferentially suppresses STAT/iNOS signaling in activated macrophages. Ichikawa T; Li J; Nagarkatti P; Nagarkatti M; Hofseth LJ; Windust A; Cui T J Ethnopharmacol; 2009 Aug; 125(1):145-50. PubMed ID: 19505555 [TBL] [Abstract][Full Text] [Related]
40. Ginsenoside Rg5:Rk1 attenuates TNF-α/IFN-γ-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-κB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. Ahn S; Siddiqi MH; Aceituno VC; Simu SY; Zhang J; Jimenez Perez ZE; Kim YJ; Yang DC In Vitro Cell Dev Biol Anim; 2016 Mar; 52(3):287-295. PubMed ID: 26714752 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]