BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37154080)

  • 1. The application of machine learning to air pollution research: A bibliometric analysis.
    Li Y; Sha Z; Tang A; Goulding K; Liu X
    Ecotoxicol Environ Saf; 2023 Jun; 257():114911. PubMed ID: 37154080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of artificial intelligence in the field of air pollution: A bibliometric analysis.
    Guo Q; Ren M; Wu S; Sun Y; Wang J; Wang Q; Ma Y; Song X; Chen Y
    Front Public Health; 2022; 10():933665. PubMed ID: 36159306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems.
    Liu X; Lu D; Zhang A; Liu Q; Jiang G
    Environ Sci Technol; 2022 Feb; 56(4):2124-2133. PubMed ID: 35084840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021.
    Liu D; Cheng K; Huang K; Ding H; Xu T; Chen Z; Sun Y
    Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36232020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global research on the air quality status in response to the electrification of vehicles.
    Bao Y; Mehmood K; Saifullah ; Yaseen M; Dahlawi S; Abrar MM; Khan MA; Saud S; Dawar K; Fahad S; Faraj TK
    Sci Total Environ; 2021 Nov; 795():148861. PubMed ID: 34247076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bibliometric Analysis of Literature on Prenatal Exposure to Air Pollution: 1994-2022.
    Olutola BG; Phoobane P
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China.
    Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC
    Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic review of data mining and machine learning for air pollution epidemiology.
    Bellinger C; Mohomed Jabbar MS; Zaïane O; Osornio-Vargas A
    BMC Public Health; 2017 Nov; 17(1):907. PubMed ID: 29179711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of an automated air quality forecasting system based on machine learning.
    Ke H; Gong S; He J; Zhang L; Cui B; Wang Y; Mo J; Zhou Y; Zhang H
    Sci Total Environ; 2022 Feb; 806(Pt 3):151204. PubMed ID: 34710417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bibliometric analysis of global research on air pollution and human health: 1998-2017.
    Dhital S; Rupakheti D
    Environ Sci Pollut Res Int; 2019 May; 26(13):13103-13114. PubMed ID: 30900125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel hybrid model for six main pollutant concentrations forecasting based on improved LSTM neural networks.
    Xu S; Li W; Zhu Y; Xu A
    Sci Rep; 2022 Aug; 12(1):14434. PubMed ID: 36002466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning and Deep Learning Techniques Applied to Diabetes Research: A Bibliometric Analysis.
    García-Jaramillo M; Luque C; León-Vargas F
    J Diabetes Sci Technol; 2024 Mar; 18(2):287-301. PubMed ID: 38047451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bibliometric analysis of research on the health impacts of ozone air pollution.
    Jian Z; Cai J; Chen R; Niu Y; Kan H
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16177-16187. PubMed ID: 38324150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bibliometric Analysis of the Impacts of Air Pollution on Children.
    Sun J; Zhou Z; Huang J; Li G
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32079218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].
    Zhang YJ; Zhou DH; Bai ZP; Xue FX
    Zhonghua Liu Xing Bing Xue Za Zhi; 2018 Feb; 39(2):227-232. PubMed ID: 29495211
    [No Abstract]   [Full Text] [Related]  

  • 17. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
    Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E
    Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages and challenges of the implementation of a low-cost particulate matter monitoring system as a decision-making tool.
    Caquilpán P V; Aros G G; Elgueta A S; Díaz S R; Sepúlveda K G; Sierralta J C
    Environ Monit Assess; 2019 Oct; 191(11):667. PubMed ID: 31650385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual analysis of global air pollution impact research: a bibliometric review (1996-2022).
    Cao Y; Wu X; Han W; An J
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40383-40418. PubMed ID: 37452246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.