Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 37154101)

  • 1. New perspective on DNA response pathway (DDR) in glioblastoma, focus on classic biomarkers and emerging roles of ncRNAs.
    Pirlog BO; Ilut S; Pirlog R; Chiroi P; Nutu A; Radutiu DI; Cuc GD; Berindan-Neagoe I; Nabavi SF; Filosa R; Nabavi SM
    Expert Rev Mol Med; 2023 May; 25():e18. PubMed ID: 37154101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncoding RNAs in DNA Damage Response: Opportunities for Cancer Therapeutics.
    Arjumand W; Asiaf A; Ahmad ST
    Methods Mol Biol; 2018; 1699():3-21. PubMed ID: 29086365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rad51 Degradation: Role in Oncolytic Virus-Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma.
    Ning J; Wakimoto H; Peters C; Martuza RL; Rabkin SD
    J Natl Cancer Inst; 2017 Mar; 109(3):1-13. PubMed ID: 28376211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolving DNA repair synthetic lethality targets in cancer.
    Kulkarni S; Brownlie J; Jeyapalan JN; Mongan NP; Rakha EA; Madhusudan S
    Biosci Rep; 2022 Dec; 42(12):. PubMed ID: 36420962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities.
    Jurkovicova D; Neophytou CM; Gašparović AČ; Gonçalves AC
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the DNA damage response for cancer therapy.
    Curtin NJ
    Biochem Soc Trans; 2023 Feb; 51(1):207-221. PubMed ID: 36606678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol.
    Lesueur P; Lequesne J; Grellard JM; Dugué A; Coquan E; Brachet PE; Geffrelot J; Kao W; Emery E; Berro DH; Castera L; Goardon N; Lacroix J; Lange M; Capel A; Leconte A; Andre B; Léger A; Lelaidier A; Clarisse B; Stefan D
    BMC Cancer; 2019 Mar; 19(1):198. PubMed ID: 30832617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-Damage-Repair Gene Alterations in Genitourinary Malignancies.
    Dariane C; Timsit MO
    Eur Surg Res; 2022; 63(4):155-164. PubMed ID: 35944490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BRCAness as a Biomarker of Susceptibility to PARP Inhibitors in Glioblastoma Multiforme.
    Xavier MA; Rezende F; Titze-de-Almeida R; Cornelissen B
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Damage Response in Glioblastoma: Mechanism for Treatment Resistance and Emerging Therapeutic Strategies.
    Bonm A; Kesari S
    Cancer J; 2021 Sep-Oct 01; 27(5):379-385. PubMed ID: 34570452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Novel Biomarkers of Homologous Recombination Defect in DNA Repair to Predict Sensitivity of Prostate Cancer Cells to PARP-Inhibitors.
    Criscuolo D; Morra F; Giannella R; Cerrato A; Celetti A
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31242618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of Temozolomide Sensitivity by PARP Inhibitors in Mismatch Repair Deficient Glioblastoma is Independent of Base Excision Repair.
    Higuchi F; Nagashima H; Ning J; Koerner MVA; Wakimoto H; Cahill DP
    Clin Cancer Res; 2020 Apr; 26(7):1690-1699. PubMed ID: 31900275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving From Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy.
    Gourley C; Balmaña J; Ledermann JA; Serra V; Dent R; Loibl S; Pujade-Lauraine E; Boulton SJ
    J Clin Oncol; 2019 Sep; 37(25):2257-2269. PubMed ID: 31050911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies.
    Padella A; Ghelli Luserna Di Rorà A; Marconi G; Ghetti M; Martinelli G; Simonetti G
    J Hematol Oncol; 2022 Jan; 15(1):10. PubMed ID: 35065680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone deacetylase 6 acts upstream of DNA damage response activation to support the survival of glioblastoma cells.
    Yang WB; Wu AC; Hsu TI; Liou JP; Lo WL; Chang KY; Chen PY; Kikkawa U; Yang ST; Kao TJ; Chen RM; Chang WC; Ko CY; Chuang JY
    Cell Death Dis; 2021 Sep; 12(10):884. PubMed ID: 34584069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer.
    Gulliver C; Hoffmann R; Baillie GS
    Int J Biochem Cell Biol; 2022 Jun; 147():106230. PubMed ID: 35609768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glioblastoma recurrent cells switch between ATM and ATR pathway as an alternative strategy to survive radiation stress.
    Kaur E; Ketkar M; Dutt S
    Med Oncol; 2022 Feb; 39(5):50. PubMed ID: 35150325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The promise of DNA damage response inhibitors for the treatment of glioblastoma.
    Majd NK; Yap TA; Koul D; Balasubramaniyan V; Li X; Khan S; Gandy KS; Yung WKA; de Groot JF
    Neurooncol Adv; 2021; 3(1):vdab015. PubMed ID: 33738447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted blockade of HSP90 impairs DNA-damage response proteins and increases the sensitivity of ovarian carcinoma cells to PARP inhibition.
    Gabbasov R; Benrubi ID; O'Brien SW; Krais JJ; Johnson N; Litwin S; Connolly DC
    Cancer Biol Ther; 2019; 20(7):1035-1045. PubMed ID: 30929564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic basis for PARP mutagenesis in glioblastoma: A review.
    M A; Xavier J; A S F; Bisht P; Murti K; Ravichandiran V; Kumar N
    Eur J Pharmacol; 2023 Jan; 938():175424. PubMed ID: 36442619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.