These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37154341)

  • 1. [An antibacterial peptides recognition method based on BERT and Text-CNN].
    Xu X; Yang C; Shu K; Yuan X; Li M; Zhu Y; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2023 Apr; 39(4):1815-1824. PubMed ID: 37154341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel antibacterial peptide recognition algorithm based on BERT.
    Zhang Y; Lin J; Zhao L; Zeng X; Liu X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A linguistic model for the rational design of antimicrobial peptides.
    Loose C; Jensen K; Rigoutsos I; Stephanopoulos G
    Nature; 2006 Oct; 443(7113):867-9. PubMed ID: 17051220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAMPR4: a database of natural and synthetic antimicrobial peptides.
    Gawde U; Chakraborty S; Waghu FH; Barai RS; Khanderkar A; Indraguru R; Shirsat T; Idicula-Thomas S
    Nucleic Acids Res; 2023 Jan; 51(D1):D377-D383. PubMed ID: 36370097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperativity in Bacterial Membrane Association Controls the Synergistic Activities of Antimicrobial Peptides.
    Nguyen TN; Teimouri H; Medvedeva A; Kolomeisky AB
    J Phys Chem B; 2022 Sep; 126(38):7365-7372. PubMed ID: 36108158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.
    Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB
    PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current synthetic chemistry towards cyclic antimicrobial peptides.
    He T; Qu R; Zhang J
    J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tools and techniques for rational designing of antimicrobial peptides for aquaculture.
    Bhat RAH; Thakuria D; Tandel RS; Khangembam VC; Dash P; Tripathi G; Sarma D
    Fish Shellfish Immunol; 2022 Aug; 127():1033-1050. PubMed ID: 35872334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Hydrophobic Amino Acid Substitutions on Antimicrobial Peptide Behavior.
    Saint Jean KD; Henderson KD; Chrom CL; Abiuso LE; Renn LM; Caputo GA
    Probiotics Antimicrob Proteins; 2018 Sep; 10(3):408-419. PubMed ID: 29103131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS
    J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host defense antimicrobial peptides as antibiotics: design and application strategies.
    Mishra B; Reiling S; Zarena D; Wang G
    Curr Opin Chem Biol; 2017 Jun; 38():87-96. PubMed ID: 28399505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative antimicrobial candidate selection from informed d-/l-Peptide dimer libraries.
    Lichtenecker RJ; Ellinger B; Han HM; Jadhav KB; Baumann S; Makarewicz O; Grabenbauer M; Arndt HD
    Chembiochem; 2013 Dec; 14(18):2492-9. PubMed ID: 24151156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between Antimicrobial Peptide Magainin 2 and Nonlipid Components in the Bacterial Outer Envelope.
    Montero Vega S; Booth V; Rowley CN
    J Phys Chem B; 2022 Jul; 126(29):5473-5480. PubMed ID: 35829704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural stability of antimicrobial peptides rich in tryptophan, proline and arginine: a computational study.
    Marimuthu SK; Nagarajan K; Perumal SK; Palanisamy S; Subbiah L
    J Biomol Struct Dyn; 2022 May; 40(8):3551-3559. PubMed ID: 33210568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial Peptides: An Overview of their Structure, Function and Mechanism of Action.
    Zhang R; Xu L; Dong C
    Protein Pept Lett; 2022; 29(8):641-650. PubMed ID: 35702771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine-Tethered Stable Bicyclic Cationic Antimicrobial Peptide Combats Bacterial Infection in Vivo.
    He T; Xu L; Hu Y; Tang X; Qu R; Zhao X; Bai H; Li L; Chen W; Luo G; Fu G; Wang W; Xia X; Zhang J
    J Med Chem; 2022 Aug; 65(15):10523-10533. PubMed ID: 35920072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR modeling and design of cationic antimicrobial peptides based on structural properties of amino acids.
    Wang Y; Ding Y; Wen H; Lin Y; Hu Y; Zhang Y; Xia Q; Lin Z
    Comb Chem High Throughput Screen; 2012 May; 15(4):347-53. PubMed ID: 22263858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.