These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37154489)
21. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Bruusgaard JC; Johansen IB; Egner IM; Rana ZA; Gundersen K Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15111-6. PubMed ID: 20713720 [TBL] [Abstract][Full Text] [Related]
22. Effects of mild-exercise training cessation in human skeletal muscle. St-Amand J; Yoshioka M; Nishida Y; Tobina T; Shono N; Tanaka H Eur J Appl Physiol; 2012 Mar; 112(3):853-69. PubMed ID: 21681480 [TBL] [Abstract][Full Text] [Related]
24. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation. Murton AJ; Greenhaff PL Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221 [TBL] [Abstract][Full Text] [Related]
25. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation. Sharples AP; Polydorou I; Hughes DC; Owens DJ; Hughes TM; Stewart CE Biogerontology; 2016 Jun; 17(3):603-17. PubMed ID: 26349924 [TBL] [Abstract][Full Text] [Related]
26. The Interplay Between Exercise Metabolism, Epigenetics, and Skeletal Muscle Remodeling. Seaborne RA; Sharples AP Exerc Sport Sci Rev; 2020 Oct; 48(4):188-200. PubMed ID: 32658040 [TBL] [Abstract][Full Text] [Related]
27. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. McGorm H; Roberts LA; Coombes JS; Peake JM Sports Med; 2018 Jun; 48(6):1311-1328. PubMed ID: 29470824 [TBL] [Abstract][Full Text] [Related]
28. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults. Correa CS; Cunha G; Marques N; Oliveira-Reischak Ã; Pinto R Clin Physiol Funct Imaging; 2016 Jul; 36(4):306-10. PubMed ID: 25678146 [TBL] [Abstract][Full Text] [Related]
29. RNA-binding proteins: The next step in translating skeletal muscle adaptations? Van Pelt DW; Hettinger ZR; Vanderklish PW J Appl Physiol (1985); 2019 Aug; 127(2):654-660. PubMed ID: 31120811 [TBL] [Abstract][Full Text] [Related]
30. Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. Seaborne RA; Strauss J; Cocks M; Shepherd S; O'Brien TD; van Someren KA; Bell PG; Murgatroyd C; Morton JP; Stewart CE; Sharples AP Sci Rep; 2018 Jan; 8(1):1898. PubMed ID: 29382913 [TBL] [Abstract][Full Text] [Related]
31. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls. Weihrauch M; Handschin C Biochem Pharmacol; 2018 Jan; 147():211-220. PubMed ID: 29061342 [TBL] [Abstract][Full Text] [Related]
32. What is known about the effects of exercise or training to reduce skeletal muscle impairments of patients with myotonic dystrophy type 1? A scoping review. Roussel MP; Morin M; Gagnon C; Duchesne E BMC Musculoskelet Disord; 2019 Mar; 20(1):101. PubMed ID: 30836978 [TBL] [Abstract][Full Text] [Related]
33. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Marzetti E; Lawler JM; Hiona A; Manini T; Seo AY; Leeuwenburgh C Free Radic Biol Med; 2008 Jan; 44(2):160-8. PubMed ID: 18191752 [TBL] [Abstract][Full Text] [Related]
34. Myonuclear domains in muscle adaptation and disease. Allen DL; Roy RR; Edgerton VR Muscle Nerve; 1999 Oct; 22(10):1350-60. PubMed ID: 10487900 [TBL] [Abstract][Full Text] [Related]
35. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. Holeček M J Cachexia Sarcopenia Muscle; 2017 Aug; 8(4):529-541. PubMed ID: 28493406 [TBL] [Abstract][Full Text] [Related]
36. Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats. Ato S; Kido K; Sato K; Fujita S Exp Physiol; 2019 Oct; 104(10):1518-1531. PubMed ID: 31328833 [TBL] [Abstract][Full Text] [Related]
37. Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. Henwood TR; Taaffe DR J Gerontol A Biol Sci Med Sci; 2008 Jul; 63(7):751-8. PubMed ID: 18693231 [TBL] [Abstract][Full Text] [Related]
38. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. Seaborne RA; Hughes DC; Turner DC; Owens DJ; Baehr LM; Gorski P; Semenova EA; Borisov OV; Larin AK; Popov DV; Generozov EV; Sutherland H; Ahmetov II; Jarvis JC; Bodine SC; Sharples AP J Physiol; 2019 Jul; 597(14):3727-3749. PubMed ID: 31093990 [TBL] [Abstract][Full Text] [Related]
39. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans. McGregor RA; Poppitt SD; Cameron-Smith D Ageing Res Rev; 2014 Sep; 17():25-33. PubMed ID: 24833328 [TBL] [Abstract][Full Text] [Related]
40. Dynamic muscle strength alterations to detraining and retraining in elderly men. Taaffe DR; Marcus R Clin Physiol; 1997 May; 17(3):311-24. PubMed ID: 9171971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]