These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37154551)

  • 41. Comparison of Different Technologies for Soft Robotics Grippers.
    Terrile S; Argüelles M; Barrientos A
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34066680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Grasping movements toward seen and handheld objects.
    Camponogara I; Volcic R
    Sci Rep; 2019 Mar; 9(1):3665. PubMed ID: 30842478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tactile Model O: Fabrication and Testing of a 3D-Printed, Three-Fingered Tactile Robot Hand.
    James JW; Church A; Cramphorn L; Lepora NF
    Soft Robot; 2021 Oct; 8(5):594-610. PubMed ID: 33337925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An object for an action, the same object for other actions: effects on hand shaping.
    Ansuini C; Giosa L; Turella L; Altoè G; Castiello U
    Exp Brain Res; 2008 Feb; 185(1):111-9. PubMed ID: 17909766
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A soft-contact model for computing safety margins in human prehension.
    Singh T; Ambike S
    Hum Mov Sci; 2017 Oct; 55():307-314. PubMed ID: 28392098
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visual delay affects force scaling and weight perception during object lifting in virtual reality.
    van Polanen V; Tibold R; Nuruki A; Davare M
    J Neurophysiol; 2019 Apr; 121(4):1398-1409. PubMed ID: 30673365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects.
    Liu Y; Jiang L; Yang D; Liu H
    PLoS One; 2016; 11(8):e0161772. PubMed ID: 27580298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Realtime Hand-Object Interaction Using Learned Grasp Space for Virtual Environments.
    Tian H; Wang C; Manocha D; Zhang X
    IEEE Trans Vis Comput Graph; 2019 Aug; 25(8):2623-2635. PubMed ID: 29994119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Creating objects and object categories for studying perception and perceptual learning.
    Hauffen K; Bart E; Brady M; Kersten D; Hegdé J
    J Vis Exp; 2012 Nov; (69):e3358. PubMed ID: 23149420
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Object manipulation without hands.
    Sugasawa S; Webb B; Healy SD
    Proc Biol Sci; 2021 Mar; 288(1947):20203184. PubMed ID: 33726598
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stability of perception of the hand's aperture in a grasp.
    Butler AA; Héroux ME; van Eijk T; Gandevia SC
    J Physiol; 2019 Dec; 597(24):5973-5984. PubMed ID: 31671476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Grasping two-dimensional images and three-dimensional objects in visual-form agnosia.
    Westwood DA; Danckert J; Servos P; Goodale MA
    Exp Brain Res; 2002 May; 144(2):262-7. PubMed ID: 12012164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Left visual field preference for a bimanual grasping task with ecologically valid object sizes.
    Le A; Niemeier M
    Exp Brain Res; 2013 Oct; 230(2):187-96. PubMed ID: 23857170
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microsoft kinect-based artificial perception system for control of functional electrical stimulation assisted grasping.
    Strbac M; Kočović S; Marković M; Popović DB
    Biomed Res Int; 2014; 2014():740469. PubMed ID: 25202707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Center or side: biases in selecting grasp points on small bars.
    Paulun VC; Kleinholdermann U; Gegenfurtner KR; Smeets JB; Brenner E
    Exp Brain Res; 2014 Jul; 232(7):2061-72. PubMed ID: 24639066
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluid Pressure Monitoring-Based Strategy for Delicate Grasping of Fragile Objects by A Robotic Hand with Fluid Fingertips.
    Nishimura T; Suzuki Y; Tsuji T; Watanabe T
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769839
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Paediatric 3D-Printed Soft Robotic Hand Prosthesis for Children with Upper Limb Loss.
    Mohammadi A; Lavranos J; Tan Y; Choong P; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3310-3313. PubMed ID: 33018712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On-line control of grasping actions: object-specific motor facilitation requires sustained visual input.
    Prabhu G; Lemon R; Haggard P
    J Neurosci; 2007 Nov; 27(46):12651-4. PubMed ID: 18003844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human Grasp Mechanism Understanding, Human-Inspired Grasp Control and Robotic Grasping Planning for Agricultural Robots.
    Zheng W; Guo N; Zhang B; Zhou J; Tian G; Xiong Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.