BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 37154694)

  • 1. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression.
    Dent MR; Weaver BR; Roberts MG; Burstyn JN
    J Bacteriol; 2023 May; 205(5):e0033222. PubMed ID: 37154694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RcoM: a new single-component transcriptional regulator of CO metabolism in bacteria.
    Kerby RL; Youn H; Roberts GP
    J Bacteriol; 2008 May; 190(9):3336-43. PubMed ID: 18326575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation, Genomic Sequence and Physiological Characterization of
    Imaura Y; Okamoto S; Hino T; Ogami Y; Katayama YA; Tanimura A; Inoue M; Kamikawa R; Yoshida T; Sako Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0018523. PubMed ID: 37219438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state.
    Roberts GP; Thorsteinsson MV; Kerby RL; Lanzilotta WN; Poulos T
    Prog Nucleic Acid Res Mol Biol; 2001; 67():35-63. PubMed ID: 11525385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and biophysical properties of the CO-sensing transcriptional activator CooA.
    Aono S
    Acc Chem Res; 2003 Nov; 36(11):825-31. PubMed ID: 14622029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state.
    Clark RW; Youn H; Lee AJ; Roberts GP; Burstyn JN
    J Biol Inorg Chem; 2007 Feb; 12(2):139-46. PubMed ID: 17082920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the role of the N-terminal proline, the distal heme ligand in the CO sensor CooA.
    Clark RW; Youn H; Parks RB; Cherney MM; Roberts GP; Burstyn JN
    Biochemistry; 2004 Nov; 43(44):14149-60. PubMed ID: 15518565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CooA, a paradigm for gas sensing regulatory proteins.
    Roberts GP; Kerby RL; Youn H; Conrad M
    J Inorg Biochem; 2005 Jan; 99(1):280-92. PubMed ID: 15598507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO sniffing through heme-based sensor proteins.
    Ascenzi P; Bocedi A; Leoni L; Visca P; Zennaro E; Milani M; Bolognesi M
    IUBMB Life; 2004 Jun; 56(6):309-15. PubMed ID: 15370879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival.
    Cordero PRF; Bayly K; Man Leung P; Huang C; Islam ZF; Schittenhelm RB; King GM; Greening C
    ISME J; 2019 Nov; 13(11):2868-2881. PubMed ID: 31358912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription.
    Rajeev L; Hillesland KL; Zane GM; Zhou A; Joachimiak MP; He Z; Zhou J; Arkin AP; Wall JD; Stahl DA
    J Bacteriol; 2012 Nov; 194(21):5783-93. PubMed ID: 22904289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternary Structure and Deoxyribonucleic Acid-Binding Properties of the Heme-Dependent, CO-Sensing Transcriptional Regulator
    Dent MR; Roberts MG; Bowman HE; Weaver BR; McCaslin DR; Burstyn JN
    Biochemistry; 2022 Apr; 61(8):678-688. PubMed ID: 35394749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanidine hydrochloride-induced unfolding of the three heme coordination states of the CO-sensing transcription factor, CooA.
    Lee AJ; Clark RW; Youn H; Ponter S; Burstyn JN
    Biochemistry; 2009 Jul; 48(28):6585-97. PubMed ID: 19594171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea.
    Oelgeschläger E; Rother M
    Arch Microbiol; 2008 Sep; 190(3):257-69. PubMed ID: 18575848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burkholderia xenovorans RcoM(Bx)-1, a transcriptional regulator system for sensing low and persistent levels of carbon monoxide.
    Kerby RL; Roberts GP
    J Bacteriol; 2012 Nov; 194(21):5803-16. PubMed ID: 22923594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life on the fringe: microbial adaptation to growth on carbon monoxide.
    Robb FT; Techtmann SM
    F1000Res; 2018; 7():. PubMed ID: 30647903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO sensing and regulation of gene expression by the transcriptional activator CooA.
    Aono S; Honma Y; Ohkubo K; Tawara T; Kamiya T; Nakajima H
    J Inorg Biochem; 2000 Nov; 82(1-4):51-6. PubMed ID: 11132638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering the specificity of CooA, the carbon monoxide-sensing transcriptional activator: characterization of CooA variants that bind cyanide in the Fe(II) form with high affinity.
    Thorsteinsson MV; Kerby RL; Roberts GP
    Biochemistry; 2000 Jul; 39(28):8284-90. PubMed ID: 10889037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch.
    Marvin KA; Kerby RL; Youn H; Roberts GP; Burstyn JN
    Biochemistry; 2008 Aug; 47(34):9016-28. PubMed ID: 18672900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy.
    Fukuyama Y; Inoue M; Omae K; Yoshida T; Sako Y
    Adv Appl Microbiol; 2020; 110():99-148. PubMed ID: 32386607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.