These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37155350)

  • 1. Simple Method for the Creation of a Bacteria-Sized Unilamellar Liposome with Different Proteins Localized to the Respective Sides of the Membrane.
    Noba K; Yoshimoto S; Tanaka Y; Yokoyama T; Matsuura T; Hori K
    ACS Synth Biol; 2023 May; 12(5):1437-1446. PubMed ID: 37155350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of lipid phase on liposome stability upon exposure to the mechanical stress.
    Doskocz J; Dałek P; Foryś A; Trzebicka B; Przybyło M; Mesarec L; Iglič A; Langner M
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183361. PubMed ID: 32422137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner leaflet cationic lipid increases nucleic acid loading independently of outer leaflet lipid charge in asymmetric liposomes.
    Li B; London E
    Methods; 2023 Nov; 219():16-21. PubMed ID: 37683900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability.
    Wi HS; Kim SJ; Lee K; Kim SM; Yang HS; Pak HK
    Colloids Surf B Biointerfaces; 2012 Sep; 97():37-42. PubMed ID: 22580483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicles with a double bilayer.
    Zawada ZH
    Cell Mol Biol Lett; 2004; 9(4A):589-602. PubMed ID: 15647783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Mechanism of Bilayer Separation by Extrusion, or Why Your LUVs Are Not Really Unilamellar.
    Scott HL; Skinkle A; Kelley EG; Waxham MN; Levental I; Heberle FA
    Biophys J; 2019 Oct; 117(8):1381-1386. PubMed ID: 31586522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Access to Giant Unilamellar Liposomes with Upper Size Control: Membrane-Gated, Gel-Assisted Lipid Hydration.
    Liu Z; Cui J; Zhan W
    Langmuir; 2020 Nov; 36(44):13193-13200. PubMed ID: 33125237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous transfer of small peripheral peptides between supported lipid bilayer and giant unilamellar vesicles.
    Efodili E; Knight A; Mirza M; Briones C; Lee IH
    Biochim Biophys Acta Biomembr; 2024 Feb; 1866(2):184256. PubMed ID: 37989398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
    Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K
    Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method.
    Chiba M; Miyazaki M; Ishiwata S
    Biophys J; 2014 Jul; 107(2):346-354. PubMed ID: 25028876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Chain Lipids Facilitate Insertion of Large Nanoparticles into Membranes of Small Unilamellar Vesicles.
    Marzouq A; Morgenstein L; Huang-Zhu CA; Yudovich S; Atkins A; Grupi A; Van Lehn RC; Weiss S
    Langmuir; 2024 May; 40(20):10477-10485. PubMed ID: 38710504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
    Chen S; Sun ZG; Murrell MP
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Method for the Production of High-Purity Bioinspired Large Unilamellar Vesicles.
    Macher M; Obermeier A; Fabritz S; Kube M; Kempf H; Dietz H; Platzman I; Spatz JP
    ACS Synth Biol; 2024 Mar; 13(3):781-791. PubMed ID: 38423534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octanol-assisted liposome assembly on chip.
    Deshpande S; Caspi Y; Meijering AE; Dekker C
    Nat Commun; 2016 Jan; 7():10447. PubMed ID: 26794442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.