These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37155383)

  • 1. A Robot Motion Learning Method Using Broad Learning System Verified by Small-Scale Fish-Like Robot.
    Xu S; Xu T; Li D; Yang C; Huang C; Wu X
    IEEE Trans Cybern; 2023 Sep; 53(9):6053-6065. PubMed ID: 37155383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Learning-Based Stable Servo Control Strategy Using Broad Learning System Applied for Microrobotic Control.
    Xu S; Liu J; Yang C; Wu X; Xu T
    IEEE Trans Cybern; 2022 Dec; 52(12):13727-13737. PubMed ID: 34714762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified Dynamic Movement Primitives: Robot Trajectory Planning and Force Control Under Curved Surface Constraints.
    Han L; Yuan H; Xu W; Huang Y
    IEEE Trans Cybern; 2023 Jul; 53(7):4245-4258. PubMed ID: 35333729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adoption of Machine Learning Algorithm-Based Intelligent Basketball Training Robot in Athlete Injury Prevention.
    Xu T; Tang L
    Front Neurorobot; 2020; 14():620378. PubMed ID: 33519414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots With Relative Motion.
    Jiang Y; Wang Y; Miao Z; Na J; Zhao Z; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1010-1021. PubMed ID: 33361000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal Robot-Environment Interaction Under Broad Fuzzy Neural Adaptive Control.
    Huang H; Yang C; Chen CLP
    IEEE Trans Cybern; 2021 Jul; 51(7):3824-3835. PubMed ID: 32568718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trajectory Planning of Robot Manipulator Based on RBF Neural Network.
    Song Q; Li S; Bai Q; Yang J; Zhang A; Zhang X; Zhe L
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micrometer Backstepping Control System for Linear Motion Single Axis Robot Machine Drive.
    Lin CH; Chang KT
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete-time practical robotic control for human-robot interaction with state constraint and sensorless force estimation.
    Ma Z; Liu Z; Huang P
    ISA Trans; 2022 Oct; 129(Pt A):659-674. PubMed ID: 35151487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Output Feedback and Neural Network Control of a Non-Holonomic Mobile Robot.
    Cardona M; Serrano FE
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on flow field characteristics of a self-propelled robot fish approaching static obstacles based on artificial lateral line.
    Xie O; Sun Z; Shen C
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37044102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller.
    Lin CM; Chen CH
    IEEE Trans Syst Man Cybern B Cybern; 2007 Feb; 37(1):110-23. PubMed ID: 17278565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Hybrid Path Planning Algorithm and a Bio-Inspired Control for an Omni-Wheel Mobile Robot.
    Kim C; Suh J; Han JH
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.