These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37155384)

  • 41. Telepresence augmentation for visual and haptic guided immersive teleoperation of industrial manipulator.
    Huang F; Yang X; Yan T; Chen Z
    ISA Trans; 2024 Jul; 150():262-277. PubMed ID: 38749885
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remote tactile sensing glove-based system.
    Culjat MO; Son J; Fan RE; Wottawa C; Bisley JW; Grundfest WS; Dutson EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1550-4. PubMed ID: 21096379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pseudo-haptics and self-haptics for freehand mid-air text entry in VR.
    Kim W; Xiong S
    Appl Ergon; 2022 Oct; 104():103819. PubMed ID: 35687993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Caring About the Human Operator: Haptic Shared Control for Enhanced User Comfort in Robotic Telemanipulation.
    Rahal R; Matarese G; Gabiccini M; Artoni A; Prattichizzo D; Giordano PR; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):197-203. PubMed ID: 31995500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback.
    Stepp CE; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):677-85. PubMed ID: 21984521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Haptic Teleoperation of UAVs Through Control Barrier Functions.
    Zhang D; Yang G; Khurshid RP
    IEEE Trans Haptics; 2020; 13(1):109-115. PubMed ID: 31940555
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation.
    Walker JM; Blank AA; Shewokis PA; OMalley MK
    IEEE Trans Haptics; 2015; 8(4):454-66. PubMed ID: 25861087
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grip force control during virtual object interaction: effect of force feedback,accuracy demands, and training.
    Gibo TL; Bastian AJ; Okamura AM
    IEEE Trans Haptics; 2014 Mar; 7(1):37-47. PubMed ID: 24845744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Survey on Hand-Based Haptic Interaction for Virtual Reality.
    Tong Q; Wei W; Zhang Y; Xiao J; Wang D
    IEEE Trans Haptics; 2023; 16(2):154-170. PubMed ID: 37040254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Effect of Kinesthetic and Artificial Tactile Noise and Variability on Stiffness Perception.
    Kossowsky H; Farajian M; Nisky I
    IEEE Trans Haptics; 2022; 15(2):351-362. PubMed ID: 35271449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visual delay affects force scaling and weight perception during object lifting in virtual reality.
    van Polanen V; Tibold R; Nuruki A; Davare M
    J Neurophysiol; 2019 Apr; 121(4):1398-1409. PubMed ID: 30673365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Haptic Feedback Perception and Learning With Cable-Driven Guidance in Exosuit Teleoperation of a Simulated Drone.
    Rognon C; Ramachandran V; Wu AR; Ijspeert AJ; Floreano D
    IEEE Trans Haptics; 2019; 12(3):375-385. PubMed ID: 31251196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of hand contact areas and interaction capabilities during manipulation and exploration.
    Gonzalez F; Gosselin F; Bachta W
    IEEE Trans Haptics; 2014; 7(4):415-29. PubMed ID: 25532147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pseudo-Haptic Feedback in Teleoperation.
    Neupert C; Matich S; Scherping N; Kupnik M; Werthschutzky R; Hatzfeld C
    IEEE Trans Haptics; 2016; 9(3):397-408. PubMed ID: 27116752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction.
    Sim D; Baek Y; Cho M; Park S; Sagar ASMS; Kim HS
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback.
    Jara CA; Pomares J; Candelas FA; Torres F
    Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.