These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 37155612)
1. Inverse Probability of Treatment Weighting and Confounder Missingness in Electronic Health Record-based Analyses: A Comparison of Approaches Using Plasmode Simulation. Vader DT; Mamtani R; Li Y; Griffith SD; Calip GS; Hubbard RA Epidemiology; 2023 Jul; 34(4):520-530. PubMed ID: 37155612 [TBL] [Abstract][Full Text] [Related]
2. Performance of Multiple Imputation Using Modern Machine Learning Methods in Electronic Health Records Data. Getz K; Hubbard RA; Linn KA Epidemiology; 2023 Mar; 34(2):206-215. PubMed ID: 36722803 [TBL] [Abstract][Full Text] [Related]
3. A Principled Approach to Characterize and Analyze Partially Observed Confounder Data from Electronic Health Records. Weberpals J; Raman SR; Shaw PA; Lee H; Russo M; Hammill BG; Toh S; Connolly JG; Dandreo KJ; Tian F; Liu W; Li J; Hernández-Muñoz JJ; Glynn RJ; Desai RJ Clin Epidemiol; 2024; 16():329-343. PubMed ID: 38798915 [TBL] [Abstract][Full Text] [Related]
4. Propensity score analysis with partially observed covariates: How should multiple imputation be used? Leyrat C; Seaman SR; White IR; Douglas I; Smeeth L; Kim J; Resche-Rigon M; Carpenter JR; Williamson EJ Stat Methods Med Res; 2019 Jan; 28(1):3-19. PubMed ID: 28573919 [TBL] [Abstract][Full Text] [Related]
5. Analyzing missingness patterns in real-world data using the SMDI toolkit: application to a linked EHR-claims pharmacoepidemiology study. Raman SR; Hammill BG; Shaw PA; Lee H; Toh S; Connolly JG; Dandreo KJ; Nalawade V; Tian F; Liu W; Li J; Hernández-Muñoz JJ; Glynn RJ; Desai RJ; Weberpals J BMC Med Res Methodol; 2024 Oct; 24(1):246. PubMed ID: 39427148 [TBL] [Abstract][Full Text] [Related]
6. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype. Guo F; Langworthy B; Ogino S; Wang M Stat Methods Med Res; 2024 Feb; 33(2):344-356. PubMed ID: 38262434 [TBL] [Abstract][Full Text] [Related]
7. Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why. Leyrat C; Carpenter JR; Bailly S; Williamson EJ Am J Epidemiol; 2021 Apr; 190(4):663-672. PubMed ID: 33057574 [TBL] [Abstract][Full Text] [Related]
8. Outcome-sensitive multiple imputation: a simulation study. Kontopantelis E; White IR; Sperrin M; Buchan I BMC Med Res Methodol; 2017 Jan; 17(1):2. PubMed ID: 28068910 [TBL] [Abstract][Full Text] [Related]
9. Dealing with missing delirium assessments in prospective clinical studies of the critically ill: a simulation study and reanalysis of two delirium studies. Raman R; Chen W; Harhay MO; Thompson JL; Ely EW; Pandharipande PP; Patel MB BMC Med Res Methodol; 2021 May; 21(1):97. PubMed ID: 33952189 [TBL] [Abstract][Full Text] [Related]
10. Missing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation. Moodie EE; Delaney JA; Lefebvre G; Platt RW Int J Biostat; 2008; 4(1):Article 13. PubMed ID: 22462119 [TBL] [Abstract][Full Text] [Related]
11. A nonparametric multiple imputation approach for missing categorical data. Zhou M; He Y; Yu M; Hsu CH BMC Med Res Methodol; 2017 Jun; 17(1):87. PubMed ID: 28587662 [TBL] [Abstract][Full Text] [Related]
12. Missing data strategies for time-varying confounders in comparative effectiveness studies of non-missing time-varying exposures and right-censored outcomes. Desai M; Montez-Rath ME; Kapphahn K; Joyce VR; Mathur MB; Garcia A; Purington N; Owens DK Stat Med; 2019 Jul; 38(17):3204-3220. PubMed ID: 31099433 [TBL] [Abstract][Full Text] [Related]
13. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
14. Propensity score trimming mitigates bias due to covariate measurement error in inverse probability of treatment weighted analyses: A plasmode simulation. Conover MM; Rothman KJ; Stürmer T; Ellis AR; Poole C; Jonsson Funk M Stat Med; 2021 Apr; 40(9):2101-2112. PubMed ID: 33622016 [TBL] [Abstract][Full Text] [Related]
15. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related]
16. Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster randomized trials with missing binary outcomes under covariate-dependent missingness. Turner EL; Yao L; Li F; Prague M Stat Methods Med Res; 2020 May; 29(5):1338-1353. PubMed ID: 31293199 [TBL] [Abstract][Full Text] [Related]
17. Propensity Score Weighting with Missing Data on Covariates and Clustered Data Structure. Liu X Multivariate Behav Res; 2024; 59(3):411-433. PubMed ID: 38379305 [TBL] [Abstract][Full Text] [Related]
18. Analyzing partially missing confounder information in comparative effectiveness and safety research of therapeutics. Toh S; García Rodríguez LA; Hernán MA Pharmacoepidemiol Drug Saf; 2012 May; 21 Suppl 2(0 2):13-20. PubMed ID: 22552975 [TBL] [Abstract][Full Text] [Related]
19. Missing Data in Marginal Structural Models: A Plasmode Simulation Study Comparing Multiple Imputation and Inverse Probability Weighting. Liu SH; Chrysanthopoulou SA; Chang Q; Hunnicutt JN; Lapane KL Med Care; 2019 Mar; 57(3):237-243. PubMed ID: 30664611 [TBL] [Abstract][Full Text] [Related]