These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37155861)

  • 1. Detecting the exponential relaxation spectrum in glasses by high-precision nanocalorimetry.
    Song L; Gao Y; Zou P; Xu W; Gao M; Zhang Y; Huo J; Li F; Qiao J; Wang LM; Wang JQ
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2302776120. PubMed ID: 37155861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow stretched-exponential and fast compressed-exponential relaxation from local event dynamics.
    Trachenko K; Zaccone A
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34034250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes.
    Chua YZ; Young-Gonzales AR; Richert R; Ediger MD; Schick C
    J Chem Phys; 2017 Jul; 147(1):014502. PubMed ID: 28688431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual fast secondary relaxation in metallic glass.
    Wang Q; Zhang ST; Yang Y; Dong YD; Liu CT; Lu J
    Nat Commun; 2015 Jul; 6():7876. PubMed ID: 26204999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended aging of Ge-Se glasses below the glass transition temperature.
    King EA; Sen S; Takeda W; Boussard-Pledel C; Bureau B; Guin JP; Lucas P
    J Chem Phys; 2021 Apr; 154(16):164502. PubMed ID: 33940843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation of bulk metallic glasses studied by mechanical spectroscopy.
    Qiao J; Pelletier JM; Casalini R
    J Phys Chem B; 2013 Oct; 117(43):13658-66. PubMed ID: 24070200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast dynamic mode in rare earth based glasses.
    Zhao LZ; Xue RJ; Zhu ZG; Ngai KL; Wang WH; Bai HY
    J Chem Phys; 2016 May; 144(20):204507. PubMed ID: 27250316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses.
    Yu HB; Richert R; Samwer K
    Sci Adv; 2017 Nov; 3(11):e1701577. PubMed ID: 29159283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental Link between β Relaxation, Excess Wings, and Cage-Breaking in Metallic Glasses.
    Yu HB; Yang MH; Sun Y; Zhang F; Liu JB; Wang CZ; Ho KM; Richert R; Samwer K
    J Phys Chem Lett; 2018 Oct; 9(19):5877-5883. PubMed ID: 30240226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of dielectric relaxations of anhydrous trehalose and maltose glasses.
    Kwon HJ; Seo JA; Kim HK; Hwang YH
    J Chem Phys; 2011 Jan; 134(1):014508. PubMed ID: 21219008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear transformation zone analysis of anelastic relaxation of a metallic glass reveals distinct properties of α and β relaxations.
    Lei TJ; Rangel DaCosta L; Liu M; Wang WH; Sun YH; Greer AL; Atzmon M
    Phys Rev E; 2019 Sep; 100(3-1):033001. PubMed ID: 31639957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinguishing different classes of secondary relaxations from vapour deposited ultrastable glasses.
    Rodríguez-Tinoco C; Ngai KL; Rams-Baron M; Rodríguez-Viejo J; Paluch M
    Phys Chem Chem Phys; 2018 Aug; 20(34):21925-21933. PubMed ID: 29862402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses.
    Yang Q; Peng SX; Wang Z; Yu HB
    Natl Sci Rev; 2020 Dec; 7(12):1896-1905. PubMed ID: 34691531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation.
    Toledo-Marín JQ; Naumis GG
    Phys Rev E; 2018 Apr; 97(4-1):042106. PubMed ID: 29758677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Atomic-Scale Features of Low Temperature-Relaxation Dynamics in Metallic Glasses.
    Wang B; Shang BS; Gao XQ; Wang WH; Bai HY; Pan MX; Guan PF
    J Phys Chem Lett; 2016 Dec; 7(23):4945-4950. PubMed ID: 27934059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation.
    Poirier-Brulez F; Roudaut G; Champion D; Tanguy M; Simatos D
    Biopolymers; 2006 Feb; 81(2):63-73. PubMed ID: 16127661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple nonlinear equation for structural relaxation in glasses.
    Kolvin I; Bouchbinder E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):010501. PubMed ID: 23005357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal scaling law of glass rheology.
    Song S; Zhu F; Chen M
    Nat Mater; 2022 Apr; 21(4):404-409. PubMed ID: 35102307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressed correlation functions and fast aging dynamics in metallic glasses.
    Ruta B; Baldi G; Monaco G; Chushkin Y
    J Chem Phys; 2013 Feb; 138(5):054508. PubMed ID: 23406134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glass.
    Lu Z; Shang BS; Sun YT; Zhu ZG; Guan PF; Wang WH; Bai HY
    J Chem Phys; 2016 Apr; 144(14):144501. PubMed ID: 27083732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.