BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37155888)

  • 1. Evolution of coronavirus frameshifting elements: Competing stem networks explain conservation and variability.
    Yan S; Zhu Q; Hohl J; Dong A; Schlick T
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2221324120. PubMed ID: 37155888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intricate balancing act: Upstream and downstream frameshift co-regulatory elements.
    Lee S; Yan S; Dey A; Laederach A; Schlick T
    bioRxiv; 2024 Jun; ():. PubMed ID: 38979256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Jain S; Yan S
    Biophys J; 2021 Mar; 120(6):1040-1053. PubMed ID: 33096082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression.
    Yan S; Zhu Q; Jain S; Schlick T
    Nat Commun; 2022 Jul; 13(1):4284. PubMed ID: 35879278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. -1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element.
    Mikkelsen AA; Gao F; Carino E; Bera S; Simon AE
    Nucleic Acids Res; 2023 Oct; 51(19):10700-10718. PubMed ID: 37742076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element.
    Schlick T; Zhu Q; Dey A; Jain S; Yan S; Laederach A
    J Am Chem Soc; 2021 Aug; 143(30):11404-11422. PubMed ID: 34283611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function.
    Pekarek L; Zimmer MM; Gribling-Burrer AS; Buck S; Smyth R; Caliskan N
    Nucleic Acids Res; 2023 Jan; 51(2):728-743. PubMed ID: 36537211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
    Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT
    Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting.
    Liphardt J; Napthine S; Kontos H; Brierley I
    J Mol Biol; 1999 May; 288(3):321-35. PubMed ID: 10329145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Inhibitors of -1 Programmed Ribosomal Frameshifting in a Broad Spectrum of Coronaviruses.
    Munshi S; Neupane K; Ileperuma SM; Halma MTJ; Kelly JA; Halpern CF; Dinman JD; Loerch S; Woodside MT
    Viruses; 2022 Jan; 14(2):. PubMed ID: 35215770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting.
    Napthine S; Liphardt J; Bloys A; Routledge S; Brierley I
    J Mol Biol; 1999 May; 288(3):305-20. PubMed ID: 10329144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tying the knot: Unraveling the intricacies of the coronavirus frameshift pseudoknot.
    Trinity L; Stege U; Jabbari H
    PLoS Comput Biol; 2024 May; 20(5):e1011787. PubMed ID: 38713726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary structure and mutational analysis of the ribosomal frameshift signal of rous sarcoma virus.
    Marczinke B; Fisher R; Vidakovic M; Bloys AJ; Brierley I
    J Mol Biol; 1998 Nov; 284(2):205-25. PubMed ID: 9813113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop.
    Peterson JM; Becker ST; O'Leary CA; Juneja P; Yang Y; Moss WN
    Biochemistry; 2024 May; 63(10):1287-1296. PubMed ID: 38727003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal.
    Brierley I; Rolley NJ; Jenner AJ; Inglis SC
    J Mol Biol; 1991 Aug; 220(4):889-902. PubMed ID: 1880803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To knot or not to knot: Multiple conformations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Dey A; Jain S; Yan S; Laederach A
    bioRxiv; 2021 Jul; ():. PubMed ID: 33821274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2).
    Kelly JA; Olson AN; Neupane K; Munshi S; San Emeterio J; Pollack L; Woodside MT; Dinman JD
    J Biol Chem; 2020 Jul; 295(31):10741-10748. PubMed ID: 32571880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif.
    Pallan PS; Marshall WS; Harp J; Jewett FC; Wawrzak Z; Brown BA; Rich A; Egli M
    Biochemistry; 2005 Aug; 44(34):11315-22. PubMed ID: 16114868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.