BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37155895)

  • 1. Antenna-coupled infrared nanospectroscopy of intramolecular vibrational interaction.
    Wilcken R; Nishida J; Triana JF; John-Herpin A; Altug H; Sharma S; Herrera F; Raschke MB
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2220852120. PubMed ID: 37155895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purcell-Enhanced Spontaneous Emission of Molecular Vibrations.
    Metzger B; Muller E; Nishida J; Pollard B; Hentschel M; Raschke MB
    Phys Rev Lett; 2019 Oct; 123(15):153001. PubMed ID: 31702318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline.
    Yamada Y; Okano J; Mikami N; Ebata T
    J Chem Phys; 2005 Sep; 123(12):124316. PubMed ID: 16392491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular vibrational energy redistribution in bridged azulene-anthracene compounds: ballistic energy transport through molecular chains.
    Schwarzer D; Kutne P; Schröder C; Troe J
    J Chem Phys; 2004 Jul; 121(4):1754-64. PubMed ID: 15260725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. I. Intramolecular vibrational energy redistribution of the OH and CH stretching vibrations of bare phenol.
    Yamada Y; Ebata T; Kayano M; Mikami N
    J Chem Phys; 2004 Apr; 120(16):7400-9. PubMed ID: 15267650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field infrared vibrational dynamics and tip-enhanced decoherence.
    Xu XG; Raschke MB
    Nano Lett; 2013 Apr; 13(4):1588-95. PubMed ID: 23387347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the intramolecular vibrational energy transfer and structural dynamics of anionic ligands in a photo-catalytic CO
    Liu Q; Zhang Y; Zhang Q; Wei Q; Zhou D; Wu G; Cai K; Yuan K; Bian H
    Phys Chem Chem Phys; 2019 Oct; 21(41):23026-23035. PubMed ID: 31599895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales.
    Muller EA; Pollard B; Raschke MB
    J Phys Chem Lett; 2015 Apr; 6(7):1275-84. PubMed ID: 26262987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing the Sample-Size Limit of Infrared Vibrational Nanospectroscopy: From Monolayer toward Single Molecule Sensitivity.
    Xu XG; Rang M; Craig IM; Raschke MB
    J Phys Chem Lett; 2012 Jul; 3(13):1836-41. PubMed ID: 26291869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast vibrational dynamics of a solute correlates with dynamics of the solvent.
    Crum VF; Kiefer LM; Kubarych KJ
    J Chem Phys; 2021 Oct; 155(13):134502. PubMed ID: 34624983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking Intramolecular Vibrational Redistribution in Polyatomic Small-Molecule Liquids by Ultrafast Time-Frequency-Resolved CARS.
    Liu X; Zhang W; Song Y; Yu G; Zheng Z; Zeng Y; Lv Z; Song H; Yang Y
    J Phys Chem A; 2017 Jul; 121(26):4948-4952. PubMed ID: 28610422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation dynamics of NH stretching vibrations of 2-aminopyridine and its dimer in a supersonic beam.
    Yamada Y; Mikami N; Ebata T
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12690-5. PubMed ID: 18641125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of electron in intramolecular vibrational energy redistribution: a simulation of time- and frequency-resolved CARS spectrum.
    Wang Z; Wu H; Liu X; Song Y; Yang Y
    RSC Adv; 2019 Aug; 9(45):26030-26036. PubMed ID: 35531038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central-metal effect on intramolecular vibrational energy transfer of M(CO)
    Yang F; Dong X; Feng M; Zhao J; Wang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3637-3647. PubMed ID: 29340363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational energy dynamics of normal and deuterated liquid benzene.
    Seong NH; Fang Y; Dlott DD
    J Phys Chem A; 2009 Feb; 113(8):1445-52. PubMed ID: 19186952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of vibrational dynamics in electronic relaxation of Cr(acac)₃.
    Maçôas EM; Mustalahti S; Myllyperkiö P; Kunttu H; Pettersson M
    J Phys Chem A; 2015 Mar; 119(11):2727-34. PubMed ID: 25590671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational relaxation by methylated xanthines in solution: Insights from 2D IR spectroscopy and calculations.
    Hanes AT; Grieco C; Lalisse RF; Hadad CM; Kohler B
    J Chem Phys; 2023 Jan; 158(4):044302. PubMed ID: 36725522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Picosecond IR-UV pump-probe spectroscopic study on the vibrational energy flow in isolated molecules and clusters.
    Yamada Y; Katsumoto Y; Ebata T
    Phys Chem Chem Phys; 2007 Mar; 9(10):1170-85. PubMed ID: 17325763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.