These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37155960)

  • 1. Evaluating the Transition State Stabilization/Destabilization Effects of the Electric Fields from Scaffold Residues by a QM/MM Approach.
    Yan S; Ji X; Peng W; Wang B
    J Phys Chem B; 2023 May; 127(19):4245-4253. PubMed ID: 37155960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ab Initio QM/MM Study of the Electrostatic Contribution to Catalysis in the Active Site of Ketosteroid Isomerase.
    Wang X; He X
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Do Preorganized Electric Fields Function in Catalytic Cycles? The Case of the Enzyme Tyrosine Hydroxylase.
    Peng W; Yan S; Zhang X; Liao L; Zhang J; Shaik S; Wang B
    J Am Chem Soc; 2022 Nov; 144(44):20484-20494. PubMed ID: 36282048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric Fields and Fast Protein Dynamics in Enzymes.
    Zoi I; Antoniou D; Schwartz SD
    J Phys Chem Lett; 2017 Dec; 8(24):6165-6170. PubMed ID: 29220191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Charge Distributions, Electric Dipole Moments, and Local Electric Fields Influence Reactivity Patterns and Guide Regioselectivities in α-Ketoglutarate-Dependent Non-heme Iron Dioxygenases.
    de Visser SP; Mukherjee G; Ali HS; Sastri CV
    Acc Chem Res; 2022 Jan; 55(1):65-74. PubMed ID: 34915695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oriented External Electric Fields and Ionic Additives Elicit Catalysis and Mechanistic Crossover in Oxidative Addition Reactions.
    Joy J; Stuyver T; Shaik S
    J Am Chem Soc; 2020 Feb; 142(8):3836-3850. PubMed ID: 31994390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.
    Liu CT; Layfield JP; Stewart RJ; French JB; Hanoian P; Asbury JB; Hammes-Schiffer S; Benkovic SJ
    J Am Chem Soc; 2014 Jul; 136(29):10349-60. PubMed ID: 24977791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Dynamics Support Electrostatic Interactions in the Active Site of Adenylate Kinase.
    Lawal MM; Vaissier Welborn V
    Chembiochem; 2022 May; 23(10):e202200097. PubMed ID: 35303385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields?
    Bradshaw RT; Dziedzic J; Skylaris CK; Essex JW
    J Chem Inf Model; 2020 Jun; 60(6):3131-3144. PubMed ID: 32298113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting the performance of single-atom catalysts via external electric field polarization.
    Pan Y; Wang X; Zhang W; Tang L; Mu Z; Liu C; Tian B; Fei M; Sun Y; Su H; Gao L; Wang P; Duan X; Ma J; Ding M
    Nat Commun; 2022 Jun; 13(1):3063. PubMed ID: 35654804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme electric fields power catalysis in the active site of ketosteroid isomerase.
    Fried SD; Bagchi S; Boxer SG
    Science; 2014 Dec; 346(6216):1510-4. PubMed ID: 25525245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry of Charge Density as a Reporter on the Role of the Protein Scaffold in Enzymatic Catalysis: Electrostatic Preorganization and Beyond.
    Eberhart ME; Wilson TR; Johnston NW; Alexandrova AN
    J Chem Theory Comput; 2023 Feb; 19(3):694-704. PubMed ID: 36562645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in optimizing enzyme electrostatic preorganization.
    Hennefarth MR; Alexandrova AN
    Curr Opin Struct Biol; 2022 Feb; 72():1-8. PubMed ID: 34280872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TITAN: A Code for Modeling and Generating Electric Fields-Features and Applications to Enzymatic Reactivity.
    Stuyver T; Huang J; Mallick D; Danovich D; Shaik S
    J Comput Chem; 2020 Jan; 41(1):74-82. PubMed ID: 31568581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What is so special about Arg 55 in the catalysis of cyclophilin A? insights from hybrid QM/MM simulations.
    Li G; Cui Q
    J Am Chem Soc; 2003 Dec; 125(49):15028-38. PubMed ID: 14653737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Fields as a Tool to Analyze Enzyme Reaction Mechanism Variants and Reaction Steps.
    Kędzierski P; Moskal M; Sokalski WA
    J Phys Chem B; 2021 Oct; 125(42):11606-11616. PubMed ID: 34648705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Preorganized Electric Field Leads to Minimal Geometrical Reorientation in the Catalytic Reaction of Ketosteroid Isomerase.
    Wu Y; Fried SD; Boxer SG
    J Am Chem Soc; 2020 Jun; 142(22):9993-9998. PubMed ID: 32378409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuations of Electric Fields in the Active Site of the Enzyme Ketosteroid Isomerase.
    Welborn VV; Head-Gordon T
    J Am Chem Soc; 2019 Aug; 141(32):12487-12492. PubMed ID: 31368302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.