These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37156145)

  • 1. Doping molybdenum oxides with different non-metal atoms to promote bioelectrocatalysis in microbial fuel cells.
    Wu X; Li X; Shi Z; Wang X; Wang Z; Lin W; Wu S; Sun W; Ming Li C
    J Colloid Interface Sci; 2023 Sep; 645():371-379. PubMed ID: 37156145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells.
    Wu X; Li X; Shi Z; Wang X; Wang Z; Li CM
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.
    Wu X; Qiao Y; Shi Z; Tang W; Li CM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11671-11677. PubMed ID: 29557635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen doping to atomically match reaction sites in microbial fuel cells.
    Wu X; Qiao Y; Guo C; Shi Z; Li CM
    Commun Chem; 2020 Jun; 3(1):68. PubMed ID: 36703435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes.
    Yamashita T; Yokoyama H
    Biotechnol Biofuels; 2018; 11():39. PubMed ID: 29456626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1629-35. PubMed ID: 21120470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional electrodes enhance electricity generation and nitrogen removal of microbial fuel cells.
    Dong J; Wu Y; Wang C; Lu H; Li Y
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2165-2174. PubMed ID: 32642906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide.
    Zhu W; Yao M; Gao H; Wen H; Zhao X; Zhang J; Bai H
    Sci Total Environ; 2019 Nov; 691():1089-1097. PubMed ID: 31466191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.
    Cheng Y; Mallavarapu M; Naidu R; Chen Z
    Chemosphere; 2018 Feb; 193():618-624. PubMed ID: 29169138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells.
    Guo W; Chao S; Chen Q
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):143-151. PubMed ID: 31535224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH
    Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.
    Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC
    Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting current generation in microbial fuel cells by an order of magnitude by coating an ionic liquid polymer on carbon anodes.
    Yang L; Deng W; Zhang Y; Tan Y; Ma M; Xie Q
    Biosens Bioelectron; 2017 May; 91():644-649. PubMed ID: 28110139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling up microbial fuel cells.
    Dewan A; Beyenal H; Lewandowski Z
    Environ Sci Technol; 2008 Oct; 42(20):7643-8. PubMed ID: 18983087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring of pore structure in mesoporous carbon for favourable flavin mediated interfacial electron transfer in microbial fuel cells.
    Tang W; Wu XS; Qiao Y; Wang RJ; Luo X
    RSC Adv; 2018 Mar; 8(18):9597-9602. PubMed ID: 35540814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.
    Roh SH; Kim SI
    J Nanosci Nanotechnol; 2012 May; 12(5):4252-5. PubMed ID: 22852384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer interpretation of the biofilm-coated anode of a microbial fuel cell and the cathode modification effects on its power.
    Yang Y; Choi C; Xie G; Park JD; Ke S; Yu JS; Zhou J; Lim B
    Bioelectrochemistry; 2019 Jun; 127():94-103. PubMed ID: 30771661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.
    Kim M; Kim HW; Nam JY; In SI
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6891-9. PubMed ID: 26716261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Power Density of Microbial Fuel Cells with 3D Nitrogen-Doped Graphene Aerogel Electrode.
    Yang Y; Liu T; Zhu X; Zhang F; Ye D; Liao Q; Li Y
    Adv Sci (Weinh); 2016 Aug; 3(8):1600097. PubMed ID: 27818911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review.
    Sun H; Xu S; Zhuang G; Zhuang X
    J Environ Sci (China); 2016 Jan; 39():242-248. PubMed ID: 26899662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.