These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 37156188)

  • 1. Ultra-fast recovery of cathode materials from spent LiFePO
    Zhu X; Chen C; Guo Q; Liu M; Zhang Y; Sun Z; Song H
    Waste Manag; 2023 Jul; 166():70-77. PubMed ID: 37156188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries.
    Hu Z; Zhu N; Wei X; Zhang S; Li F; Wu P; Chen Y
    J Environ Manage; 2021 Nov; 298():113500. PubMed ID: 34388548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments.
    Wu Z; Zhu H; Bi H; He P; Gao S
    Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries.
    Zhu X; Zhang C; Feng P; Yang X; Yang X
    Waste Manag; 2021 Jul; 131():20-30. PubMed ID: 34091235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of LiFePO
    Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S
    Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding.
    Wang H; Liu J; Bai X; Wang S; Yang D; Fu Y; He Y
    Waste Manag; 2019 May; 91():89-98. PubMed ID: 31203946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective recovery of Li and FePO
    Kumar J; Shen X; Li B; Liu H; Zhao J
    Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation.
    Tokoro C; Lim S; Teruya K; Kondo M; Mochidzuki K; Namihira T; Kikuchi Y
    Waste Manag; 2021 Apr; 125():58-66. PubMed ID: 33684665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data.
    Kikuchi Y; Suwa I; Heiho A; Dou Y; Lim S; Namihira T; Mochidzuki K; Koita T; Tokoro C
    Waste Manag; 2021 Aug; 132():86-95. PubMed ID: 34325331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching kinetics of fluorine during the aluminum removal from spent Li-ion battery cathode materials.
    Li S; Zhu J
    J Environ Sci (China); 2024 Apr; 138():312-325. PubMed ID: 38135398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis and physical separation for the recovery of spent LiFePO
    Zhong X; Liu W; Han J; Jiao F; Qin W; Liu T; Zhao C
    Waste Manag; 2019 Apr; 89():83-93. PubMed ID: 31079762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries.
    He K; Zhang ZY; Alai L; Zhang FS
    J Hazard Mater; 2019 Aug; 375():43-51. PubMed ID: 31039463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct recovery of degraded LiCoO
    Yang H; Deng B; Jing X; Li W; Wang D
    Waste Manag; 2021 Jun; 129():85-94. PubMed ID: 34044320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.