BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37156210)

  • 1. When 3D genome changes cause disease: the impact of structural variations in congenital disease and cancer.
    Weischenfeldt J; Ibrahim DM
    Curr Opin Genet Dev; 2023 Jun; 80():102048. PubMed ID: 37156210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer.
    Du Y; Gu Z; Li Z; Yuan Z; Zhao Y; Zheng X; Bo X; Chen H; Wang C
    Adv Sci (Weinh); 2022 Jun; 9(18):e2200818. PubMed ID: 35570408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Somatic structural variant formation is guided by and influences genome architecture.
    Sidiropoulos N; Mardin BR; Rodríguez-González FG; Bochkov ID; Garg S; Stütz AM; Korbel JO; Aiden EL; Weischenfeldt J
    Genome Res; 2022 Apr; 32(4):643-655. PubMed ID: 35177558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural variation in the 3D genome.
    Spielmann M; Lupiáñez DG; Mundlos S
    Nat Rev Genet; 2018 Jul; 19(7):453-467. PubMed ID: 29692413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural variants drive context-dependent oncogene activation in cancer.
    Xu Z; Lee DS; Chandran S; Le VT; Bump R; Yasis J; Dallarda S; Marcotte S; Clock B; Haghani N; Cho CY; Akdemir KC; Tyndale S; Futreal PA; McVicker G; Wahl GM; Dixon JR
    Nature; 2022 Dec; 612(7940):564-572. PubMed ID: 36477537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of common structural variants on 3D chromatin structure.
    Shanta O; Noor A; ; Sebat J
    BMC Genomics; 2020 Jan; 21(1):95. PubMed ID: 32000688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural variations in cancer and the 3D genome.
    Dubois F; Sidiropoulos N; Weischenfeldt J; Beroukhim R
    Nat Rev Cancer; 2022 Sep; 22(9):533-546. PubMed ID: 35764888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Hi-C Data for Discovery of Structural Variations in Cancer.
    Song F; Xu J; Dixon J; Yue F
    Methods Mol Biol; 2022; 2301():143-161. PubMed ID: 34415534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome conformation capture technologies as tools to detect structural variations and their repercussion in chromatin 3D configuration.
    Stephenson-Gussinye A; Furlan-Magaril M
    Front Cell Dev Biol; 2023; 11():1219968. PubMed ID: 37457299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants.
    Xu Z; Li Q; Marchionni L; Wang K
    Nat Commun; 2023 Nov; 14(1):7805. PubMed ID: 38016949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer.
    Akdemir KC; Le VT; Chandran S; Li Y; Verhaak RG; Beroukhim R; Campbell PJ; Chin L; Dixon JR; Futreal PA; ;
    Nat Genet; 2020 Mar; 52(3):294-305. PubMed ID: 32024999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of topologically associating domains by structural variations in tetraploid cottons.
    Long Y; Liu Z; Wang P; Yang H; Wang Y; Zhang S; Zhang X; Wang M
    Genomics; 2021 Sep; 113(5):3405-3414. PubMed ID: 34311045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Structural Variations in the Context of 3D Chromatin Structure.
    Kim K; Eom J; Jung I
    Mol Cells; 2019 Jul; 42(7):512-522. PubMed ID: 31362468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-GNOME 2.0: a three-dimensional genome modeling engine for predicting structural variation-driven alterations of chromatin spatial structure in the human genome.
    Wlasnowolski M; Sadowski M; Czarnota T; Jodkowska K; Szalaj P; Tang Z; Ruan Y; Plewczynski D
    Nucleic Acids Res; 2020 Jul; 48(W1):W170-W176. PubMed ID: 32442297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type.
    Zhang L; Xu M; Zhang W; Zhu C; Cui Z; Fu H; Ma Y; Huang S; Cui J; Liang S; Huang L; Wang H
    Cell Mol Biol Lett; 2023 Jan; 28(1):1. PubMed ID: 36609218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.
    Habermann N; Mardin BR; Yakneen S; Korbel JO
    C R Biol; 2016; 339(7-8):308-13. PubMed ID: 27342254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting the impact of noncoding structural variation in neurodevelopmental disorders.
    D'haene E; Vergult S
    Genet Med; 2021 Jan; 23(1):34-46. PubMed ID: 32973355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TADeus2: a web server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure.
    Poszewiecka B; Pienkowski VM; Nowosad K; Robin JD; Gogolewski K; Gambin A
    Nucleic Acids Res; 2022 Jul; 50(W1):W744-W752. PubMed ID: 35524567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural variation discovery in the cancer genome using next generation sequencing: computational solutions and perspectives.
    Liu B; Conroy JM; Morrison CD; Odunsi AO; Qin M; Wei L; Trump DL; Johnson CS; Liu S; Wang J
    Oncotarget; 2015 Mar; 6(8):5477-89. PubMed ID: 25849937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer physics predicts the effects of structural variants on chromatin architecture.
    Bianco S; Lupiáñez DG; Chiariello AM; Annunziatella C; Kraft K; Schöpflin R; Wittler L; Andrey G; Vingron M; Pombo A; Mundlos S; Nicodemi M
    Nat Genet; 2018 May; 50(5):662-667. PubMed ID: 29662163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.