These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37156289)
1. Non-thermal plasma coupled with a wet scrubber for removing odorous VOC. Kim MR; Jeon W; Kim S Chemosphere; 2023 Aug; 332():138870. PubMed ID: 37156289 [TBL] [Abstract][Full Text] [Related]
2. Dielectric barrier discharge coupled with Fe Qin C; Jiang C; Guo M; Liu R; Yu R; Huang J; Yan D; Li S; Dang X Chemosphere; 2022 Mar; 290():133306. PubMed ID: 34922966 [TBL] [Abstract][Full Text] [Related]
3. Performance of wet scrubbers to remove VOCs from rubber emissions. Idris NF; Le-Minh N; Hayes JE; Stuetz RM J Environ Manage; 2022 Mar; 305():114426. PubMed ID: 34998062 [TBL] [Abstract][Full Text] [Related]
4. Removing volatile organic compounds in cooking fume by nano-sized TiO Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755 [TBL] [Abstract][Full Text] [Related]
5. On-line quantification and human health risk assessment of organic by-products from the removal of toluene in air using non-thermal plasma. Guo T; Li X; Li J; Peng Z; Xu L; Dong J; Cheng P; Zhou Z Chemosphere; 2018 Mar; 194():139-146. PubMed ID: 29202266 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration. Liu R; Song H; Li B; Li X; Zhu T Chemosphere; 2021 Jan; 263():127893. PubMed ID: 32835971 [TBL] [Abstract][Full Text] [Related]
7. Air ionization as a control technology for off-gas emissions of volatile organic compounds. Kim KH; Szulejko JE; Kumar P; Kwon EE; Adelodun AA; Reddy PAK Environ Pollut; 2017 Jun; 225():729-743. PubMed ID: 28347612 [TBL] [Abstract][Full Text] [Related]
8. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3. Zhu T; Chen R; Xia N; Li X; He X; Zhao W; Carr T Environ Technol; 2015; 36(9-12):1405-13. PubMed ID: 25428439 [TBL] [Abstract][Full Text] [Related]
9. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Wang H; Xiang Z; Wang L; Jing S; Lou S; Tao S; Liu J; Yu M; Li L; Lin L; Chen Y; Wiedensohler A; Chen C Sci Total Environ; 2018 Apr; 621():1300-1309. PubMed ID: 29054635 [TBL] [Abstract][Full Text] [Related]
10. Efficient control of odors and VOC emissions via activated carbon technology. Mohamed F; Kim J; Huang R; Nu HT; Lorenzo V Water Environ Res; 2014 Jul; 86(7):594-605. PubMed ID: 25112027 [TBL] [Abstract][Full Text] [Related]
11. Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction--preventing emission of by-products. Tokumura M; Wada Y; Usami Y; Yamaki T; Mizukoshi A; Noguchi M; Yanagisawa Y Chemosphere; 2012 Nov; 89(10):1238-42. PubMed ID: 22871338 [TBL] [Abstract][Full Text] [Related]
12. Identifying hotspots based on high-resolution emission inventory of volatile organic compounds: A case study in China. Liu X; Yan F; Hua H; Yuan Z J Environ Manage; 2021 Jun; 288():112419. PubMed ID: 33827028 [TBL] [Abstract][Full Text] [Related]
13. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity and linearity analysis of ozone in East Asia: the effects of domestic emission and intercontinental transport. Fu JS; Dong X; Gao Y; Wong DC; Lam YF J Air Waste Manag Assoc; 2012 Sep; 62(9):1102-14. PubMed ID: 23019824 [TBL] [Abstract][Full Text] [Related]
15. [Characterization of VOCs Emissions from Caged Broiler House in Winter]. Cao TT; Zheng YH; Zhang Y; Wang Y; Cong QX; Wang YH; Dong HM Huan Jing Ke Xue; 2022 Oct; 43(10):4357-4366. PubMed ID: 36224122 [TBL] [Abstract][Full Text] [Related]
16. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant. Nie E; Zheng G; Gao D; Chen T; Yang J; Wang Y; Wang X Sci Total Environ; 2019 Apr; 659():664-672. PubMed ID: 31096396 [TBL] [Abstract][Full Text] [Related]
17. Removal of Gaseous Volatile Organic Compounds by a Multiwalled Carbon Nanotubes/Peroxymonosulfate Wet Scrubber. Wu J; Wang J; Liu C; Nie C; Wang T; Xie X; Cao J; Zhou J; Huang H; Li D; Wang S; Ao Z Environ Sci Technol; 2022 Oct; 56(19):13996-14007. PubMed ID: 36083161 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review. Mu Y; Williams PT Chemosphere; 2022 Dec; 308(Pt 3):136481. PubMed ID: 36165927 [TBL] [Abstract][Full Text] [Related]
19. Indoor PM2.5 removal efficiency of two different non-thermal plasma systems. Hernández-Díaz D; Martos-Ferreira D; Hernández-Abad V; Villar-Ribera R; Tarrés Q; Rojas-Sola JI J Environ Manage; 2021 Jan; 278(Pt 1):111515. PubMed ID: 33113396 [TBL] [Abstract][Full Text] [Related]
20. Volatile chemical product emissions enhance ozone and modulate urban chemistry. Coggon MM; Gkatzelis GI; McDonald BC; Gilman JB; Schwantes RH; Abuhassan N; Aikin KC; Arend MF; Berkoff TA; Brown SS; Campos TL; Dickerson RR; Gronoff G; Hurley JF; Isaacman-VanWertz G; Koss AR; Li M; McKeen SA; Moshary F; Peischl J; Pospisilova V; Ren X; Wilson A; Wu Y; Trainer M; Warneke C Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34341119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]