These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37156289)
21. Wet scrubber analysis of volatile organic compound removal in the rendering industry. Kastner JR; Das KC J Air Waste Manag Assoc; 2002 Apr; 52(4):459-69. PubMed ID: 12002191 [TBL] [Abstract][Full Text] [Related]
22. Emerging investigator series: primary emissions, ozone reactivity, and byproduct emissions from building insulation materials. Chin K; Laguerre A; Ramasubramanian P; Pleshakov D; Stephens B; Gall ET Environ Sci Process Impacts; 2019 Aug; 21(8):1255-1267. PubMed ID: 30938389 [TBL] [Abstract][Full Text] [Related]
23. Primary organic gas emissions from gasoline vehicles in China: Factors, composition and trends. Qi L; Zhao J; Li Q; Su S; Lai Y; Deng F; Man H; Wang X; Shen X; Lin Y; Ding Y; Liu H Environ Pollut; 2021 Dec; 290():117984. PubMed ID: 34455299 [TBL] [Abstract][Full Text] [Related]
24. Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst. Xie R; Liu G; Liu D; Liang S; Lei D; Dong H; Huang H; Leung DYC Chemosphere; 2019 Jul; 227():401-408. PubMed ID: 31003124 [TBL] [Abstract][Full Text] [Related]
26. Emission of volatile organic compounds from composting: A review on assessment, treatment and perspectives. Dhamodharan K; Varma VS; Veluchamy C; Pugazhendhi A; Rajendran K Sci Total Environ; 2019 Dec; 695():133725. PubMed ID: 31425982 [TBL] [Abstract][Full Text] [Related]
27. Emission factors, ozone and secondary organic aerosol formation potential of volatile organic compounds emitted from industrial biomass boilers. Geng C; Yang W; Sun X; Wang X; Bai Z; Zhang X J Environ Sci (China); 2019 Sep; 83():64-72. PubMed ID: 31221388 [TBL] [Abstract][Full Text] [Related]
28. Emission of odorous volatile organic compounds from a municipal manure treatment plant and their removal using a biotrickling filter. Li JJ; Wu YD; Zhang YL; Zeng PY; Tu X; Xu MY; Sun GP Environ Technol; 2015; 36(5-8):1050-6. PubMed ID: 25300536 [TBL] [Abstract][Full Text] [Related]
29. Assessment of volatile organic compound emissions from pesticides in China and their contribution to ozone formation potential. Chen S; Xu Z; Liu P; Zhuang Y; Jiang M; Zhang X; Han Z; Liu Y; Chen X Environ Monit Assess; 2022 Sep; 194(10):737. PubMed ID: 36068415 [TBL] [Abstract][Full Text] [Related]
30. Emission, dispersion, and potential risk of volatile organic and odorous compounds in the exhaust gas from two sludge thermal drying processes. Xue S; Ding W; Li L; Ma J; Chai F; Liu J Waste Manag; 2022 Feb; 138():116-124. PubMed ID: 34875454 [TBL] [Abstract][Full Text] [Related]
31. Benzene decomposition by non-thermal plasma: A detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations. Liang Y; Li J; Xue Y; Tan T; Jiang Z; He Y; Shangguan W; Yang J; Pan Y J Hazard Mater; 2021 Oct; 420():126584. PubMed ID: 34273887 [TBL] [Abstract][Full Text] [Related]
32. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China. Wang R; Wang X; Cheng S; Wang K; Cheng L; Zhu J; Zheng H; Duan W Sci Total Environ; 2022 Feb; 809():151134. PubMed ID: 34695460 [TBL] [Abstract][Full Text] [Related]
33. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process. Wei ZS; Li HQ; He JC; Ye QH; Huang QR; Luo YW Bioresour Technol; 2013 Oct; 146():451-456. PubMed ID: 23954717 [TBL] [Abstract][Full Text] [Related]
34. Integrated assessment of volatile organic compounds from industrial biomass boilers in China: emission characteristics, influencing factors, and ozone formation potential. Shi R; Yuan Z; Yang L; Huang D; Ma H Environ Sci Pollut Res Int; 2023 Jan; 30(4):9852-9864. PubMed ID: 36063268 [TBL] [Abstract][Full Text] [Related]
35. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Ou J; Zheng J; Li R; Huang X; Zhong Z; Zhong L; Lin H Sci Total Environ; 2015 Oct; 530-531():393-402. PubMed ID: 26057544 [TBL] [Abstract][Full Text] [Related]
36. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Gu S; Guenther A; Faiola C Environ Sci Technol; 2021 Sep; 55(18):12191-12201. PubMed ID: 34495669 [TBL] [Abstract][Full Text] [Related]
37. Volatile organic compounds from a mixed fleet with numerous E10-fuelled vehicles in a tunnel study in China: Emission characteristics, ozone formation and secondary organic aerosol formation. Jin B; Zhu R; Mei H; Wang M; Zu L; Yu S; Zhang R; Li S; Bao X Environ Res; 2021 Sep; 200():111463. PubMed ID: 34111436 [TBL] [Abstract][Full Text] [Related]
38. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. Karuppiah J; Reddy EL; Reddy PM; Ramaraju B; Karvembu R; Subrahmanyam Ch J Hazard Mater; 2012 Oct; 237-238():283-9. PubMed ID: 22975253 [TBL] [Abstract][Full Text] [Related]
39. Volatile organic compounds at a roadside site in Hong Kong: Characteristics, chemical reactivity, and health risk assessment. Han S; Tan Y; Gao Y; Li X; Ho SSH; Wang M; Lee SC Sci Total Environ; 2023 Mar; 866():161370. PubMed ID: 36621478 [TBL] [Abstract][Full Text] [Related]
40. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]