BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37156295)

  • 41. Cullin 3 Ubiquitin Ligases in Cancer Biology: Functions and Therapeutic Implications.
    Chen HY; Chen RH
    Front Oncol; 2016; 6():113. PubMed ID: 27200299
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and dynamics of a pentameric KCTD5/CUL3/Gβγ E3 ubiquitin ligase complex.
    Nguyen DM; Rath DH; Devost D; Pétrin D; Rizk R; Ji AX; Narayanan N; Yong D; Zhai A; Kuntz DA; Mian MUQ; Pomroy NC; Keszei AFA; Benlekbir S; Mazhab-Jafari MT; Rubinstein JL; Hébert TE; Privé GG
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2315018121. PubMed ID: 38625940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications.
    Keum YS
    Ann N Y Acad Sci; 2011 Jul; 1229():184-9. PubMed ID: 21793854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of human Keap1 S53 and S293 residues in modulating the binding of Keap1 to Nrf2.
    Wei S; Pei Y; Wang Y; Guan H; Huang Y; Xing T; Johnson RW; Wang D
    Biochimie; 2019 Mar; 158():73-81. PubMed ID: 30576774
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3.
    Rachakonda G; Xiong Y; Sekhar KR; Stamer SL; Liebler DC; Freeman ML
    Chem Res Toxicol; 2008 Mar; 21(3):705-10. PubMed ID: 18251510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cullin 3 RING E3 ligase inactivation causes NRF2-dependent NADH reductive stress, hepatic lipodystrophy, and systemic insulin resistance.
    Gu L; Du Y; Chen J; Hasan MN; Clayton YD; Matye DJ; Friedman JE; Li T
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2320934121. PubMed ID: 38630726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural insights into the multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1.
    Unni S; Deshmukh P; Krishnappa G; Kommu P; Padmanabhan B
    FEBS J; 2021 Mar; 288(5):1599-1613. PubMed ID: 32672401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The KEAP1-NRF2 System and Neurodegenerative Diseases.
    Uruno A; Yamamoto M
    Antioxid Redox Signal; 2023 May; 38(13-15):974-988. PubMed ID: 36930785
    [No Abstract]   [Full Text] [Related]  

  • 50. Analysis of dimerization of BTB-IVR domains of Keap1 and its interaction with Cul3, by molecular modeling.
    Chauhan N; Chaunsali L; Deshmukh P; Padmanabhan B
    Bioinformation; 2013; 9(9):450-5. PubMed ID: 23847398
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GSTM3 deficiency impedes DNA mismatch repair to promote gastric tumorigenesis via CAND1/NRF2-KEAP1 signaling.
    Chen T; Jinlin D; Wang F; Yuan Z; Xue J; Lu T; Huang W; Liu Y; Zhang Y
    Cancer Lett; 2022 Jul; 538():215692. PubMed ID: 35487311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal-contact engineering to obtain a crystal form of the Kelch domain of human Keap1 suitable for ligand-soaking experiments.
    Hörer S; Reinert D; Ostmann K; Hoevels Y; Nar H
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jun; 69(Pt 6):592-6. PubMed ID: 23722832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cysteine-based regulation of the CUL3 adaptor protein Keap1.
    Sekhar KR; Rachakonda G; Freeman ML
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction.
    Wang XJ; Sun Z; Chen W; Li Y; Villeneuve NF; Zhang DD
    Toxicol Appl Pharmacol; 2008 Aug; 230(3):383-9. PubMed ID: 18417180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW; Niture SK; Jaiswal AK
    J Cell Sci; 2012 Feb; 125(Pt 4):1027-38. PubMed ID: 22448038
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex.
    McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2006 Aug; 281(34):24756-68. PubMed ID: 16790436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PIDD interaction with KEAP1 as a new mutation-independent mechanism to promote NRF2 stabilization and chemoresistance in NSCLC.
    Ji L; Zhang R; Chen J; Xue Q; Moghal N; Tsao MS
    Sci Rep; 2019 Aug; 9(1):12437. PubMed ID: 31455821
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural Insights into KCTD Protein Assembly and Cullin3 Recognition.
    Ji AX; Chu A; Nielsen TK; Benlekbir S; Rubinstein JL; Privé GG
    J Mol Biol; 2016 Jan; 428(1):92-107. PubMed ID: 26334369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes.
    Ichikawa T; Li J; Meyer CJ; Janicki JS; Hannink M; Cui T
    PLoS One; 2009 Dec; 4(12):e8391. PubMed ID: 20027226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of cullin3 E3 ubiquitin ligase dimerization.
    Choo YY; Hagen T
    PLoS One; 2012; 7(7):e41350. PubMed ID: 22911784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.