BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 37156438)

  • 1. Rapid generation of aged tire-wear particles using dry-, wet-, and cryo-milling for ecotoxicity testing.
    Shin H; Jeong S; Hong J; Wi E; Park E; Yang SI; Kwon JT; Lee H; Lee J; Kim Y
    Environ Pollut; 2023 Aug; 330():121787. PubMed ID: 37156438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the concentration of nano‑carbon black originating from tire-wear particles in the road dust.
    Kim J; Wi E; Moon H; Son H; Hong J; Park E; Kwon JT; Seo DY; Lee H; Kim Y
    Sci Total Environ; 2022 Oct; 842():156830. PubMed ID: 35738373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of treadwear grade on the generation of tire PM emissions in laboratory and real-world driving conditions.
    Woo SH; Jang H; Mun SH; Lim Y; Lee S
    Sci Total Environ; 2022 Sep; 838(Pt 4):156548. PubMed ID: 35688251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of particulate matter from asphalt pavement and tire of a moving bus through driving tests in city road and proving ground.
    Chae E; Bae SH; Lee SW; Yun JH; Choi SS
    Environ Pollut; 2024 Mar; 344():123336. PubMed ID: 38211876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the concentration of nano-carbon black in tire-wear particles using emission factors of PM
    Kim J; Park E; Moon H; Son H; Hong J; Wi E; Kwon JT; Seo DY; Lee H; Kim Y
    Chemosphere; 2022 Sep; 303(Pt 1):134976. PubMed ID: 35595106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxic Tire Wear Compounds (6PPD-Q and 4-ADPA) Detected in Airborne Particulate Matter Along a Highway in Mississippi, USA.
    Olubusoye BS; Cizdziel JV; Bee M; Moore MT; Pineda M; Yargeau V; Bennett ER
    Bull Environ Contam Toxicol; 2023 Nov; 111(6):68. PubMed ID: 37940736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicity of tire wear particles to antioxidant enzyme system and metabolic functional activity of river biofilms: The strengthening role after incubation-aging in migrating water phases.
    Li K; Hao W; Liu C; Chen Z; Ye Z
    Sci Total Environ; 2024 Mar; 914():169849. PubMed ID: 38185180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories.
    Zhang J; Peng J; Song C; Ma C; Men Z; Wu J; Wu L; Wang T; Zhang X; Tao S; Gao S; Hopke PK; Mao H
    Environ Pollut; 2020 Nov; 266(Pt 2):115268. PubMed ID: 32836045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Static modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres.
    Prenner S; Allesch A; Staudner M; Rexeis M; Schwingshackl M; Huber-Humer M; Part F
    Environ Pollut; 2021 Dec; 290():118102. PubMed ID: 34523518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Types and concentrations of tire wear particles (TWPs) in road dust generated in slow lanes.
    Chae E; Jung U; Choi SS
    Environ Pollut; 2024 Apr; 346():123670. PubMed ID: 38423271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of particulate matter emissions from non-passenger diesel vehicles in Qatar.
    Al-Thani H; Koç M; Fountoukis C; Isaifan RJ
    J Air Waste Manag Assoc; 2020 Feb; 70(2):228-242. PubMed ID: 31971491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and quantification of tire wear particles by employing different cross-validation techniques: FTIR-ATR Micro-FTIR, Pyr-GC/MS, and SEM.
    Rosso B; Gregoris E; Litti L; Zorzi F; Fiorini M; Bravo B; Barbante C; Gambaro A; Corami F
    Environ Pollut; 2023 Jun; 326():121511. PubMed ID: 36967009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automotive brake wear: a review.
    Wahid SMS
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):174-180. PubMed ID: 29110235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Size Distribution and Source Appointment of Road Particles During Winter in Tianjin].
    Zhang GT; Yin BH; Bai WY; Guo LY; Wang ZY; Zhang N; Zheng ZS; Zhang LW; Yang W; Han B; Bai ZP
    Huan Jing Ke Xue; 2022 Sep; 43(9):4467-4474. PubMed ID: 36096587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk implications induced by behaviors of artificial and pavement-generated TWPs in river water: Role of particle-self properties and incubation aging.
    Li K; Hao W; Liu C
    Environ Pollut; 2024 Feb; 343():123277. PubMed ID: 38163629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical characteristics of fine tire wear particles generated on a tire simulator.
    Guo Q; Men Z; Liu Z; Niu Z; Fang T; Liu F; Wu L; Peng J; Mao H
    Environ Pollut; 2023 Nov; 336():122399. PubMed ID: 37657724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Characterization of Model Tire-Road Wear Particles.
    Son CE; Choi SS
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements.
    Kwak JH; Kim H; Lee J; Lee S
    Sci Total Environ; 2013 Aug; 458-460():273-82. PubMed ID: 23664985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential cytotoxicity to human cells in vitro of tire wear particles emitted from typical road friction patterns: The dominant role of environmental persistent free radicals.
    Li K; Yu J; Kong D; Chen X; Peng Y; Wang L
    Chemosphere; 2023 Dec; 343():140256. PubMed ID: 37742763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of emission of tire wear particles (TWPs) in Korea.
    Lee H; Ju M; Kim Y
    Waste Manag; 2020 May; 108():154-159. PubMed ID: 32353780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.