These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37156549)

  • 1. Mesoscale standing wave imaging.
    Foylan S; Schniete JK; Kölln LS; Dempster J; Hansen CG; Shaw M; Bushell TJ; McConnell G
    J Microsc; 2024 Jul; 295(1):33-41. PubMed ID: 37156549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton.
    Schniete JK; Tinning PW; Scrimgeour RC; Robb G; Kölln LS; Wesencraft K; Paul NR; Bushell TJ; McConnell G
    Sci Rep; 2021 Feb; 11(1):2903. PubMed ID: 33536463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.
    Chung E; Kim D; Cui Y; Kim YH; So PT
    Biophys J; 2007 Sep; 93(5):1747-57. PubMed ID: 17483188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing multiscale microbial challenges using the Mesolens.
    Rooney LM; Bottura B; Baxter K; Amos WB; Hoskisson PA; McConnell G
    J Microsc; 2024 Nov; 296(2):139-144. PubMed ID: 36692253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy.
    Chung E; Kim D; So PT
    Opt Lett; 2006 Apr; 31(7):945-7. PubMed ID: 16599220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple image processing pipeline to sharpen topology maps in multi-wavelength interference microscopy.
    Tinning PW; Schniete JK; Scrimgeour R; Kölln LS; Rooney LM; Bushell TJ; McConnell G
    Opt Lett; 2023 Mar; 48(5):1092-1095. PubMed ID: 36857221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Optical Sectioning for Widefield Fluorescence Mesoscopy with the Mesolens based on HiLo Microscopy.
    Schniete J; Franssen A; Dempster J; Bushell TJ; Amos WB; McConnell G
    Sci Rep; 2018 Nov; 8(1):16259. PubMed ID: 30390029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-sheet mesoscopy with the Mesolens provides fast sub-cellular resolution imaging throughout large tissue volumes.
    Battistella E; Schniete J; Wesencraft K; Quintana JF; McConnell G
    iScience; 2022 Sep; 25(9):104797. PubMed ID: 36034214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a standing-wave fluorescence microscope with high nodal plane flatness.
    Freimann R; Pentz S; Hörler H
    J Microsc; 1997 Sep; 187(Pt 3):193-200. PubMed ID: 9351235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach.
    So PT; Kwon HS; Dong CY
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2833-45. PubMed ID: 11688874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation.
    Bailey B; Farkas DL; Taylor DL; Lanni F
    Nature; 1993 Nov; 366(6450):44-8. PubMed ID: 8232536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A switching method for traveling/standing wave transportation modes in two-dimensional acoustic fields using a dual-transducer support structure.
    Mu G; Dong H; Sun T; Grattan KTV; Wu Z; Zhao J
    Ultrason Sonochem; 2023 Dec; 101():106724. PubMed ID: 38100894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast 3-D Imaging of Brain Organoids With a New Single-Objective Planar-Illumination Two-Photon Microscope.
    Rakotoson I; Delhomme B; Djian P; Deeg A; Brunstein M; Seebacher C; Uhl R; Ricard C; Oheim M
    Front Neuroanat; 2019; 13():77. PubMed ID: 31481880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells.
    Gliko O; Reddy GD; Anvari B; Brownell WE; Saggau P
    J Biomed Opt; 2006; 11(6):064013. PubMed ID: 17212536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution.
    Cao S; Wang T; Sun Q; Hu B; Levy U; Yu W
    Opt Express; 2017 Jun; 25(13):14494-14503. PubMed ID: 28789035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination.
    Lee WS; Lim G; Kim WC; Choi GJ; Yi HW; Park NC
    Opt Express; 2018 Apr; 26(8):9901-9919. PubMed ID: 29715937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution surface plasmon resonance imaging for single cells.
    Peterson AW; Halter M; Tona A; Plant AL
    BMC Cell Biol; 2014 Dec; 15():35. PubMed ID: 25441447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widefield standing wave microscopy of red blood cell membrane morphology with high temporal resolution.
    Tinning PW; Scrimgeour R; McConnell G
    Biomed Opt Express; 2018 Apr; 9(4):1745-1761. PubMed ID: 29675316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers.
    Siegel N; Lupashin V; Storrie B; Brooker G
    Nat Photonics; 2016 Dec; 10():802-808. PubMed ID: 28261321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waveguide-based total internal reflection fluorescence microscope enabling cellular imaging under cryogenic conditions.
    Li Q; Hulleman CN; Moerland RJ; Mailvaganam E; Ganapathy S; Brinks D; Stallinga S; Rieger B
    Opt Express; 2021 Oct; 29(21):34097-34108. PubMed ID: 34809207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.