BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37156744)

  • 1. p-Chloropropynyl Phenylalanine, a Versatile Non-Canonical Amino Acid for Co-Translational Peptide Macrocyclization and Side Chain Diversification.
    Osorio Franco HE; Le AV; Chang NY; Hartman MCT
    Chembiochem; 2023 Jun; 24(11):e202300020. PubMed ID: 37156744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Genetic Code Expansion and Peptide Macrocyclization in mRNA Display via a Promiscuous Orthogonal Aminoacyl-tRNA Synthetase.
    Iskandar SE; Pelton JM; Wick ET; Bolhuis DL; Baldwin AS; Emanuele MJ; Brown NG; Bowers AA
    J Am Chem Soc; 2023 Jan; 145(3):1512-1517. PubMed ID: 36630539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous, co-translational peptide macrocyclization using
    Franco HEO; Chaloux BT; Hartman MCT
    Chem Commun (Camb); 2022 Jun; 58(47):6737-6740. PubMed ID: 35607950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases.
    Hartman MCT
    Chembiochem; 2022 Jan; 23(1):e202100299. PubMed ID: 34416067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids.
    Kwok HS; Vargas-Rodriguez O; Melnikov SV; Söll D
    ACS Chem Biol; 2019 Apr; 14(4):603-612. PubMed ID: 30933556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids.
    Kerestesy GN; Dods KK; McFeely CAL; Hartman MCT
    ACS Synth Biol; 2024 Jan; 13(1):119-128. PubMed ID: 38194520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Expression with Biosynthesized Noncanonical Amino Acids.
    Wang Y; Cai W; Han B; Liu T
    Methods Mol Biol; 2023; 2676():87-100. PubMed ID: 37277626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase.
    Iqbal ES; Dods KK; Hartman MCT
    Org Biomol Chem; 2018 Feb; 16(7):1073-1078. PubMed ID: 29367962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent modification of phenylalanyl-tRNA synthetase with phenylalanine during the amino acid activation reaction catalyzed by the enzyme.
    Rapaport E; Yogeeswaran G; Zamecnik PC; Remy P
    J Biol Chem; 1985 Aug; 260(17):9509-12. PubMed ID: 3848435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side-chain-to-tail cyclization of ribosomally derived peptides promoted by aryl and alkyl amino-functionalized unnatural amino acids.
    Frost JR; Wu Z; Lam YC; Owens AE; Fasan R
    Org Biomol Chem; 2016 Jun; 14(24):5803-12. PubMed ID: 27064594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive charging of transfer ribonucleic acid by bean leaf extracts in vitro.
    Tao KL; Hall TC
    Biochem J; 1971 Dec; 125(4):975-81. PubMed ID: 5144266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of tRNA-aminoacyl-tRNA synthetase recognition: influence of aminoalkyladenylates.
    Krauss G; Coutts SM; Riesner D; Maass G
    Biochemistry; 1978 Jun; 17(12):2443-9. PubMed ID: 678524
    [No Abstract]   [Full Text] [Related]  

  • 15. Overexpression of mammalian phenylalanyl-tRNA synthetase upon phenylalanine restriction.
    Lazard M; Mirande M; Waller JP
    FEBS Lett; 1987 May; 216(1):27-30. PubMed ID: 3582665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resampling and editing of mischarged tRNA prior to translation elongation.
    Ling J; So BR; Yadavalli SS; Roy H; Shoji S; Fredrick K; Musier-Forsyth K; Ibba M
    Mol Cell; 2009 Mar; 33(5):654-60. PubMed ID: 19285947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism.
    Dunkelmann DL; Piedrafita C; Dickson A; Liu KC; Elliott TS; Fiedler M; Bellini D; Zhou A; Cervettini D; Chin JW
    Nature; 2024 Jan; 625(7995):603-610. PubMed ID: 38200312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic administration of morphine on mouse brain aminoacyl-tRNA synthetase and tRNA-amino acid binding.
    Datta RK; Antopol W
    Brain Res; 1973 Apr; 53(2):373-86. PubMed ID: 4574659
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis.
    Fraser TH; Rich A
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2671-5. PubMed ID: 4582194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids.
    Wang N; Ju T; Niu W; Guo J
    ACS Synth Biol; 2015 Mar; 4(3):207-12. PubMed ID: 24847685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.