These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37157258)

  • 21. A new single-photon avalanche diode in 90nm standard CMOS technology.
    Karami MA; Gersbach M; Yoon HJ; Charbon E
    Opt Express; 2010 Oct; 18(21):22158-66. PubMed ID: 20941117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Red-Enhanced Photon Detection Module Featuring a 32 × 1 Single-Photon Avalanche Diode Array.
    Ceccarelli F; Gulinatti A; Labanca I; Ghioni M; Rech I
    IEEE Photonics Technol Lett; 2018 Mar; 30(6):557-560. PubMed ID: 29581700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of Active-Quenching SPAD Array Based on the Tri-State Gates of FPGA and Packaged with Bare Chip Stacking.
    Liu L; Lv W; Liu J; Zhang X; Liang K; Yang R; Han D
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Custom silicon technology for SPAD-arrays with red-enhanced sensitivity and low timing jitter.
    Gulinatti A; Ceccarelli F; Ghioni M; Rech I
    Opt Express; 2021 Feb; 29(3):4559-4581. PubMed ID: 33771031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.
    Acconcia G; Rech I; Gulinatti A; Ghioni M
    Opt Express; 2016 Aug; 24(16):17819-31. PubMed ID: 27505749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration.
    Sun P; Ishihara R; Charbon E
    Opt Express; 2016 Feb; 24(4):3734-48. PubMed ID: 26907030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling for Single-Photon Avalanche Diodes: State-of-the-Art and Research Challenges.
    Qian X; Jiang W; Elsharabasy A; Deen MJ
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-noise single-photon avalanche diodes in 0.25 μm high-voltage CMOS technology.
    Hsu FZ; Wu JY; Lin SD
    Opt Lett; 2013 Jan; 38(1):55-7. PubMed ID: 23282836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.
    Scarcella C; Tosi A; Villa F; Tisa S; Zappa F
    Rev Sci Instrum; 2013 Dec; 84(12):123112. PubMed ID: 24387425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LinoSPAD2: an FPGA-based, hardware-reconfigurable 512×1 single-photon camera system.
    Milanese T; Bruschini C; Burri S; Bernasconi E; Ulku AC; Charbon E
    Opt Express; 2023 Dec; 31(26):44295-44314. PubMed ID: 38178504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indirect Time-of-Flight with GHz Correlation Frequency and Integrated SPAD Reaching Sub-100 µm Precision in 0.35 µm CMOS.
    Hauser M; Zimmermann H; Hofbauer M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 3.06 μm Single-Photon Avalanche Diode Pixel with Embedded Metal Contact and Power Grid on Deep Trench Pixel Isolation for High-Resolution Photon Counting.
    Ogi J; Sano F; Nakata T; Kubo Y; Onishi W; Koswaththage C; Mochizuki T; Tashiro Y; Hizu K; Takatsuka T; Watanabe I; Koga F; Hirano T; Oike Y
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR CMOS Image Sensors.
    Tontini A; Gasparini L; Perenzoni M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network.
    Wang J; Li J; Wu Y; Yu H; Cui L; Sun M; Chiang PY
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated fiber optical receiver reducing the gap to the quantum limit.
    Zimmermann H; Steindl B; Hofbauer M; Enne R
    Sci Rep; 2017 Jun; 7(1):2652. PubMed ID: 28572578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes.
    Gulinatti A; Rech I; Maccagnani P; Cova S; Ghioni M
    Proc SPIE Int Soc Opt Eng; 2013 May; 8727():87270M-. PubMed ID: 24353395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High detection efficiency silicon single-photon detector with a monolithic integrated circuit of active quenching and active reset.
    Fang YQ; Luo K; Gao XG; Huo GQ; Zhong A; Liao PF; Pu P; Bao XH; Chen YA; Zhang J; Pan JW
    Rev Sci Instrum; 2020 Dec; 91(12):123106. PubMed ID: 33379940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.