These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37157262)

  • 1. Evaluation of eight band SuperDove imagery for aquatic applications.
    Vanhellemont Q
    Opt Express; 2023 Apr; 31(9):13851-13874. PubMed ID: 37157262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry.
    Vanhellemont Q
    Opt Express; 2020 Sep; 28(20):29948-29965. PubMed ID: 33114883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-
    Warren MA; Simis SGH; Selmes N
    Remote Sens Environ; 2021 Nov; 265():112651. PubMed ID: 34732943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daily metre-scale mapping of water turbidity using CubeSat imagery.
    Vanhellemont Q
    Opt Express; 2019 Sep; 27(20):A1372-A1399. PubMed ID: 31684493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of pasture biomass modelling using high-resolution satellite imagery and machine learning.
    Ogungbuyi MG; Guerschman J; Fischer AM; Crabbe RA; Ara I; Mohammed C; Scarth P; Tickle P; Whitehead J; Harrison MT
    J Environ Manage; 2024 Apr; 356():120564. PubMed ID: 38479283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China.
    Wang X; Gong Z; Pu R
    Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones.
    Singh RK; Shanmugam P; He X; Schroeder T
    Opt Express; 2019 Aug; 27(16):A1118-A1145. PubMed ID: 31510495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands.
    Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA
    Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters.
    Moore TS; Dowell MD; Bradt S; Verdu AR
    Remote Sens Environ; 2014 Mar; 143():97-111. PubMed ID: 24839311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric correction algorithm over coastal and inland waters based on the red and NIR bands: application to Landsat-8/OLI and VNREDSat-1/NAOMI observations.
    Ngoc DD; Loisel H; Duforêt-Gaurier L; Jamet C; Vantrepotte V; Goyens C; Xuan HC; Minh NN; Van TN
    Opt Express; 2019 Oct; 27(22):31676-31697. PubMed ID: 31684396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties.
    Ruddick KG; Gons HJ; Rijkeboer M; Tilstone G
    Appl Opt; 2001 Jul; 40(21):3575-85. PubMed ID: 18360387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content.
    Delegido J; Verrelst J; Alonso L; Moreno J
    Sensors (Basel); 2011; 11(7):7063-81. PubMed ID: 22164004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.
    Lyu H; Li X; Wang Y; Jin Q; Cao K; Wang Q; Li Y
    Sci Total Environ; 2015 Oct; 530-531():373-382. PubMed ID: 26057542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of remote sensing algorithms for the estimation of diffuse attenuation coefficients in the ultraviolet bands.
    Wang Y; Lee Z; Ondrusek M; Li X; Zhang S; Wu J
    Opt Express; 2022 Feb; 30(5):6640-6655. PubMed ID: 35299445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrally simplified approach for leveraging legacy geostationary oceanic observations.
    Houskeeper HF; Hooker SB; Cavanaugh KC
    Appl Opt; 2022 Sep; 61(27):7966-7977. PubMed ID: 36255917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a QAA-based algorithm using MODIS land bands data for retrieval of IOPs in the Eastern China Seas.
    Chen S; Zhang T
    Opt Express; 2015 Jun; 23(11):13953-71. PubMed ID: 26072765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyses of absorption and fluorescence spectra of water-soluble chlorophyll proteins, pigment system II particles and chlorophyll a in diethylether solution by the curve-fitting method.
    Sugiyama KI; Murata N
    Biochim Biophys Acta; 1978 Jul; 503(1):107-19. PubMed ID: 96855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.