These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37157266)

  • 1. Optical-density enhanced quantum entanglement via four-wave mixing process.
    Chuang YL; Ullah R; Yu IA
    Opt Express; 2023 Apr; 31(9):13911-13922. PubMed ID: 37157266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of quantum entanglement based on electromagnetically induced transparency media.
    Chuang YL; Lee RK; Yu IA
    Opt Express; 2021 Feb; 29(3):3928-3942. PubMed ID: 33770982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling.
    Zhang Z; Wang X
    Opt Express; 2020 Feb; 28(3):2732-2743. PubMed ID: 32121955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of multipartite continuous-variable entanglement via atomic spin wave: Heisenberg-Langevin approach.
    Yang X; Shang J; Xue B; Zhou Y; Xiao M
    Opt Express; 2014 May; 22(10):12563-72. PubMed ID: 24921374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating controllable atom-light entanglement with a Raman atom laser system.
    Haine SA; Olsen MK; Hope JJ
    Phys Rev Lett; 2006 Apr; 96(13):133601. PubMed ID: 16711985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of entanglement using cascaded four-wave mixing processes.
    Xin J; Qi J; Jing J
    Opt Lett; 2017 Jan; 42(2):366-369. PubMed ID: 28081114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor.
    Zhang Z; Wen F; Che J; Zhang D; Li C; Zhang Y; Xiao M
    Sci Rep; 2015 Oct; 5():15058. PubMed ID: 26463588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and characterization of position-momentum entangled photon pairs in a hot atomic gas cell.
    Wang C; Lee CH; Kim YH
    Opt Express; 2019 Nov; 27(24):34611-34617. PubMed ID: 31878648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.
    Li T; Deng FG
    Sci Rep; 2015 Oct; 5():15610. PubMed ID: 26502993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Variable Entanglement in an Optical Parametric Oscillator Based on a Nondegenerate Four Wave Mixing Process in Hot Alkali Atoms.
    Montaña Guerrero A; Rincón Celis RL; Nussenzveig P; Martinelli M; Marino AM; M Florez H
    Phys Rev Lett; 2022 Oct; 129(16):163601. PubMed ID: 36306773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental realization of efficient nondegenerate four-wave mixing in cesium atoms.
    Wu J; Guo M; Zhou H; Liu J; Li J; Zhang J
    Opt Express; 2022 Apr; 30(8):12576-12585. PubMed ID: 35472891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency entanglement of microwave fields in cavity opto-magnomechanical systems.
    Di K; Tan S; Wang L; Cheng A; Wang X; Liu Y; Du J
    Opt Express; 2023 Aug; 31(18):29491-29503. PubMed ID: 37710748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber.
    McKinstrie CJ; van Enk SJ; Raymer MG; Radic S
    Opt Express; 2008 Feb; 16(4):2720-39. PubMed ID: 18542357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers.
    Dong S; Yu L; Zhang W; Wu J; Zhang W; You L; Huang Y
    Sci Rep; 2015 Mar; 5():9195. PubMed ID: 25779686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum entanglement between an optical photon and a solid-state spin qubit.
    Togan E; Chu Y; Trifonov AS; Jiang L; Maze J; Childress L; Dutt MV; Sørensen AS; Hemmer PR; Zibrov AS; Lukin MD
    Nature; 2010 Aug; 466(7307):730-4. PubMed ID: 20686569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum entanglement of Fock states with perfectly efficient ultraslow single-probe photon four-wave mixing.
    Payne MG; Deng L
    Phys Rev Lett; 2003 Sep; 91(12):123602. PubMed ID: 14525363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum correlation in a nano-electro-optomechanical system enhanced by an optical parametric amplifier and Coulomb-type interaction.
    Mekonnen HD; Tesfahannes TG; Darge TY; Kumela AG
    Sci Rep; 2023 Aug; 13(1):13800. PubMed ID: 37612322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semideterministic Entanglement between a Single Photon and an Atomic Ensemble.
    Li J; Zhou MT; Yang CW; Sun PF; Liu JL; Bao XH; Pan JW
    Phys Rev Lett; 2019 Oct; 123(14):140504. PubMed ID: 31702192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient vortex four-wave mixing in asymmetric semiconductor quantum wells.
    Qiu J; Wang Z; Ding D; Li W; Yu B
    Opt Express; 2020 Feb; 28(3):2975-2986. PubMed ID: 32121974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor.
    Pan X; Yu S; Zhou Y; Zhang K; Zhang K; Lv S; Li S; Wang W; Jing J
    Phys Rev Lett; 2019 Aug; 123(7):070506. PubMed ID: 31491123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.