These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 37157294)

  • 1. Improving the Hufnagel-Andrews-Phillips refractive index structure parameter model using turbulent intensity.
    Stotts LB; Andrews LC
    Opt Express; 2023 Apr; 31(9):14265-14277. PubMed ID: 37157294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory.
    Mao J; Zhang Y; Li J; Gong X; Zhao H; Rao Z
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile.
    Lu Y; Mao J; Zhang Y; Zhao H; Zhou C; Gong X; Wang Q; Zhang Y
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of optical intensity fluctuation over an 11.8 km turbulent path.
    Jiang Y; Ma J; Tan L; Yu S; Du W
    Opt Express; 2008 May; 16(10):6963-73. PubMed ID: 18545400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of wind-driven telescope vibrations on measurements of turbulent angle-of-arrival fluctuations.
    Tichkule S; Muschinski A
    Appl Opt; 2014 Jul; 53(21):4651-60. PubMed ID: 25090200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of refractive index structure parameter estimation for certain infrared bands.
    Sivaslıgil M; Erol CB; Polat ÖM; Sarı H
    Appl Opt; 2013 May; 52(14):3127-33. PubMed ID: 23669824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure parameter of anisotropic atmospheric turbulence expressed in terms of anisotropic factors and oceanic turbulence parameters.
    Baykal Y; Ata Y; Gökçe MC
    Appl Opt; 2019 Jan; 58(2):454-460. PubMed ID: 30645327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering equations for the filamentation collapse distance in lossy, turbulent, nonlinear media.
    Stotts LB; Peñano JR; Tellez JA; Schmidt JD; Urick VJ
    Opt Express; 2019 Sep; 27(18):25126-25141. PubMed ID: 31510391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements.
    Bendersky S; Kopeika NS; Blaunstein N
    Appl Opt; 2004 Jul; 43(20):4070-9. PubMed ID: 15285098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind tunnel measurement dataset of 3D turbulent flow around a group of generic buildings with and without a high-rise building.
    Tominaga Y; Shirzadi M
    Data Brief; 2021 Dec; 39():107504. PubMed ID: 34765700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable model to estimate the profile of the refractive index structure parameter (C
    Wu S; Wu X; Su C; Yang Q; Xu J; Luo T; Huang C; Qing C
    Opt Express; 2021 Apr; 29(8):12454-12470. PubMed ID: 33985004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.
    Baykal Y
    Appl Opt; 2016 Feb; 55(6):1228-31. PubMed ID: 26906572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved upper winds models for several astronomical observatories.
    Roberts LC; Bradford LW
    Opt Express; 2011 Jan; 19(2):820-37. PubMed ID: 21263622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer.
    Curley MJ; Peterson BH; Wang JC; Sarkisov SS; Sarkisov Ii SS; Edlin GR; Snow RA; Rushing JF
    Opt Express; 2006 Oct; 14(20):8929-46. PubMed ID: 19529272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of data stream parameters in atmospheric turbulent wireless communication links.
    Tiker A; Yarkoni N; Blaunstein N; Zilberman A; Kopeika N
    Appl Opt; 2007 Jan; 46(2):190-9. PubMed ID: 17268564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edge technique Doppler lidar wind measurements with high vertical resolution.
    Korb CL; Gentry BM; Li SX
    Appl Opt; 1997 Aug; 36(24):5976-83. PubMed ID: 18259439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On a quasi-wavelet model of refractive index fluctuations due to atmospheric turbulence.
    Pérez DG; Funes G
    Opt Express; 2015 Dec; 23(25):31627-39. PubMed ID: 26698956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind profiling based on the optical beam intensity statistics in a turbulent atmosphere.
    Banakh VA; Marakasov DA
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3245-54. PubMed ID: 17912317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulent pipe flow studied by time-averaged NMR imaging: measurements of velocity profile and turbulent intensity.
    Li TQ; Seymour JD; Powell RL; McCarthy KL; Odberg L; McCarthy MJ
    Magn Reson Imaging; 1994; 12(6):923-34. PubMed ID: 7968291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols.
    Anand N; Satheesh SK; Krishna Moorthy K
    Opt Lett; 2017 Jul; 42(14):2714-2717. PubMed ID: 28708151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.