These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37157324)
1. Sunglint reflection facilitates performance of spaceborne UV sensor in oil spill detection. Suo Z; Li L; Lu Y; Liu J; Ding J; Ju W; Li M; Yin D; Xu F Opt Express; 2023 Apr; 31(9):14651-14658. PubMed ID: 37157324 [TBL] [Abstract][Full Text] [Related]
2. Ultraviolet remote sensing of marine oil spills: a new approach of Haiyang-1C satellite. Suo Z; Lu Y; Liu J; Ding J; Yin D; Xu F; Jiao J Opt Express; 2021 Apr; 29(9):13486-13495. PubMed ID: 33985080 [TBL] [Abstract][Full Text] [Related]
3. HY-1C ultraviolet imager captures algae blooms floating on water surface. Suo Z; Lu Y; Liu J; Ding J; Xing Q; Yin D; Xu F; Liu J Harmful Algae; 2022 May; 114():102218. PubMed ID: 35550297 [TBL] [Abstract][Full Text] [Related]
4. Refined use of AISA band-differences for oil slick identification beyond brightness contrast reversal under sunglint. Jin S; Lu Y; Liu Y; Wei X; Lu W; Wang D; Mao Z Opt Express; 2018 Dec; 26(26):33748-33755. PubMed ID: 30650807 [TBL] [Abstract][Full Text] [Related]
5. Mapping of oil spills in China Seas using optical satellite data and deep learning. Wang L; Lu Y; Wang M; Zhao W; Lv H; Song S; Wang Y; Chen Y; Zhan W; Ju W J Hazard Mater; 2024 Dec; 480():135809. PubMed ID: 39278029 [TBL] [Abstract][Full Text] [Related]
6. Correction of multi-scale sunglint reflections from the water surface in airborne high-spatial resolution optical images. Wang M; Hu Q; Zhu X; Lu Y; Jiao J; Zhou J; Ju W; Chen Z; Li C; Huang Y; Hong Q Opt Express; 2022 Dec; 30(25):45910-45917. PubMed ID: 36522984 [TBL] [Abstract][Full Text] [Related]
7. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India. Dasari K; Anjaneyulu L; Nadimikeri J Mar Pollut Bull; 2022 Jan; 174():113182. PubMed ID: 34844147 [TBL] [Abstract][Full Text] [Related]
8. Ultraviolet imager on Venus orbiter Yamazaki A; Yamada M; Lee YJ; Watanabe S; Horinouchi T; Murakami SY; Kouyama T; Ogohara K; Imamura T; Sato TM; Yamamoto Y; Fukuhara T; Ando H; Sugiyama KI; Takagi S; Kashimura H; Ohtsuki S; Hirata N; Hashimoto GL; Suzuki M; Hirose C; Ueno M; Satoh T; Abe T; Ishii N; Nakamura M Earth Planets Space; 2018; 70(1):23. PubMed ID: 31983883 [TBL] [Abstract][Full Text] [Related]
9. [Simulation and analysis of polarization characteristics for real sea surface sunglint]. Chen XF; Gu XF; Cheng TH; Li ZQ; Yu T; Xie DH Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1648-53. PubMed ID: 21847951 [TBL] [Abstract][Full Text] [Related]
10. A novel deep learning method for marine oil spill detection from satellite synthetic aperture radar imagery. Huang X; Zhang B; Perrie W; Lu Y; Wang C Mar Pollut Bull; 2022 Jun; 179():113666. PubMed ID: 35500373 [TBL] [Abstract][Full Text] [Related]
11. Influence of Dispersed Oil on the Remote Sensing Reflectance-Field Experiment in the Baltic Sea. Haule K; Toczek H; Borzycka K; Darecki M Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502624 [TBL] [Abstract][Full Text] [Related]
12. Review of oil spill remote sensing. Fingas M; Brown C Mar Pollut Bull; 2014 Jun; 83(1):9-23. PubMed ID: 24759508 [TBL] [Abstract][Full Text] [Related]
13. Geometric stitching of a HaiYang-1C ultra violet imager with a distorted virtual camera. Cao J; Zhang Z; Jin S; Chang X Opt Express; 2020 Apr; 28(9):14109-14126. PubMed ID: 32403872 [TBL] [Abstract][Full Text] [Related]
14. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf. Zhao J; Temimi M; Ghedira H; Hu C Opt Express; 2014 Jun; 22(11):13755-72. PubMed ID: 24921568 [TBL] [Abstract][Full Text] [Related]
15. Detection of Wakashio oil spill off Mauritius using Sentinel-1 and 2 data: Capability of sensors, image transformation methods and mapping. Rajendran S; Vethamony P; Sadooni FN; Al-Kuwari HA; Al-Khayat JA; Seegobin VO; Govil H; Nasir S Environ Pollut; 2021 Apr; 274():116618. PubMed ID: 33582596 [TBL] [Abstract][Full Text] [Related]
16. Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors. Arslan N Environ Monit Assess; 2018 Oct; 190(11):637. PubMed ID: 30338396 [TBL] [Abstract][Full Text] [Related]
17. Ultraviolet-assisted oiling assessment improves detection of oiled birds experiencing clinical signs of hemolytic anemia after exposure to the Deepwater Horizon oil spill. Fallon JA; Smith EP; Schoch N; Paruk JD; Adams EM; Evers DC; Jodice PGR; Perkins M; Meattey DE; Hopkins WA Ecotoxicology; 2020 Nov; 29(9):1399-1408. PubMed ID: 32785887 [TBL] [Abstract][Full Text] [Related]
18. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Jha MN; Levy J; Gao Y Sensors (Basel); 2008 Jan; 8(1):236-255. PubMed ID: 27879706 [TBL] [Abstract][Full Text] [Related]
19. Quantifying ocean surface green tides using high-spatial resolution thermal images. Song Q; Ma C; Liu J; Wei H Opt Express; 2022 Sep; 30(20):36592-36602. PubMed ID: 36258584 [TBL] [Abstract][Full Text] [Related]
20. Oil spills detection from SAR Earth observations based on a hybrid CNN transformer networks. Dehghani-Dehcheshmeh S; Akhoondzadeh M; Homayouni S Mar Pollut Bull; 2023 May; 190():114834. PubMed ID: 36934487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]