These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37157359)

  • 21. Multitemporal lidar captures heterogeneity in fuel loads and consumption on the Kaibab Plateau.
    Bright BC; Hudak AT; McCarley TR; Spannuth A; Sánchez-López N; Ottmar RD; Soja AJ
    Fire Ecol; 2022; 18(1):18. PubMed ID: 36017330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Study Regarding Long Range LiDAR Capabilities in Sensing Safety Distance for Vehicle Application.
    Popa G; Gheți MA; Tudor E; Vasile I; Sburlan IC
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatially modulated thermal light in atomic medium for enhanced ghost imaging.
    Cao M; Wang J; Yang X; Qiu S; Gao H; Li F
    Sci Rep; 2017 Aug; 7(1):8015. PubMed ID: 28808324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smartphone-Based Light Detection and Ranging for Remote Patient Evaluation and Monitoring.
    Bhandarkar AR; Bhandarkar S; Jarrah RM; Rosenman D; Bydon M
    Cureus; 2021 Aug; 13(8):e16886. PubMed ID: 34513461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lidar remote sensing of the aquatic environment: invited.
    Churnside JH; Shaw JA
    Appl Opt; 2020 Apr; 59(10):C92-C99. PubMed ID: 32400573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing.
    Mei L; Ma T; Kong Z; Gong Z; Li H
    Appl Opt; 2019 Nov; 58(32):8981-8992. PubMed ID: 31873680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approach for removing ghost-images in remote field eddy current testing of ferromagnetic pipes.
    Luo QW; Shi YB; Wang ZG; Zhang W; Zhang Y
    Rev Sci Instrum; 2016 Oct; 87(10):104707. PubMed ID: 27802756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parameter Optimization and Development of Mini Infrared Lidar for Atmospheric Three-Dimensional Detection.
    Kuang Z; Liu D; Wu D; Wang Z; Li C; Deng Q
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.
    Miffre A; Anselmo C; Geffroy S; Fréjafon E; Rairoux P
    Opt Express; 2015 Feb; 23(3):2347-60. PubMed ID: 25836102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing.
    Tan S; Narayanan RM
    Appl Opt; 2004 Apr; 43(11):2360-8. PubMed ID: 15098840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scan-less 3D optical sensing/Lidar scheme enabled by wavelength division demultiplexing and position-to-angle conversion of a lens.
    Yao XS; Liu X; Hao P
    Opt Express; 2020 Nov; 28(24):35884-35897. PubMed ID: 33379695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-beam aerosol backscatter correlation lidar for wind profiling.
    Prasad NS; Mylapore AR
    Opt Eng; 2017 Mar; 56(3):. PubMed ID: 33005063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye-safe lidar system for pesticide spray drift measurement.
    Gregorio E; Rocadenbosch F; Sanz R; Rosell-Polo JR
    Sensors (Basel); 2015 Feb; 15(2):3650-70. PubMed ID: 25658395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Denoising of the multi-slit streak tube imaging LiDAR system using a faster non-local mean method.
    Li W; Guo S; Zhai Y; Liu F; Lai Z; Han S
    Appl Opt; 2021 Dec; 60(34):10520-10528. PubMed ID: 35200912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lidar system based on lens assisted integrated beam steering.
    Cao X; Qiu G; Wu K; Li C; Chen J
    Opt Lett; 2020 Oct; 45(20):5816-5819. PubMed ID: 33057292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ghost imaging for detecting trembling with random temporal changing.
    Huang X; Nan S; Tan W; Bai Y; Fu X
    Opt Lett; 2020 Mar; 45(6):1354-1357. PubMed ID: 32163964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers.
    Li Y; Hoskins A; Schlottau F; Wagner KH; Embry C; Babbitt WR
    Appl Opt; 2006 Sep; 45(25):6409-20. PubMed ID: 16912777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing robustness of ghost imaging against environment noise via cross-correlation in time domain.
    Li D; Yang D; Sun S; Li YG; Jiang L; Lin HZ; Liu WT
    Opt Express; 2021 Sep; 29(20):31068-31077. PubMed ID: 34615208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.